Dielectric gas

Last updated

A dielectric gas, or insulating gas, is a dielectric material in gaseous state. Its main purpose is to prevent or rapidly quench electric discharges. Dielectric gases are used as electrical insulators in high voltage applications, e.g. transformers, circuit breakers (namely sulfur hexafluoride circuit breakers), switchgear (namely high voltage switchgear), radar waveguides, etc.

For high voltage applications, a good dielectric gas should have high dielectric strength, high thermal stability and chemical inertness against the construction materials used, non-flammability and low toxicity, low boiling point, good heat transfer properties, and low cost. [1]

The most common dielectric gas is air, due to its ubiquity and low cost. Another commonly used gas is a dry nitrogen.

In special cases, e.g., high voltage switches, gases with good dielectric properties and very high breakdown voltages are needed. Highly electronegative elements, e.g., halogens, are favored as they rapidly recombine with the ions present in the discharge channel. The halogen gases are highly corrosive. Other compounds, which dissociate only in the discharge pathway, are therefore preferred; sulfur hexafluoride, organofluorides (especially perfluorocarbons) and chlorofluorocarbons are the most common.

The breakdown voltage of gases is roughly proportional to their density. Breakdown voltages also increase with the gas pressure. Many gases have limited upper pressure due to their liquefaction.

The decomposition products of halogenated compounds are highly corrosive, hence the occurrence of corona discharge should be prevented.

Build-up of moisture can degrade dielectric properties of the gas. Moisture analysis is used for early detection of this.

Dielectric gases can also serve as coolants.

Vacuum is an alternative for gas in some applications.

Mixtures of gases can be used where appropriate. Addition of sulfur hexafluoride can dramatically improve the dielectric properties of poorer insulators, e.g. helium or nitrogen. [2] Multicomponent gas mixtures can offer superior dielectric properties; the optimum mixtures combine the electron attaching gases (sulfur hexafluoride, octafluorocyclobutane) with molecules capable of thermalizing (slowing) accelerated electrons (e.g. tetrafluoromethane, fluoroform). The insulator properties of the gas are controlled by the combination of electron attachment, electron scattering, and electron ionization. [3]

Atmospheric pressure significantly influences the insulation properties of air. High-voltage applications, e.g. xenon flash lamps, can experience electrical breakdowns at high altitudes.

Relative spark breakdown voltages of insulating gases at 1 atm
GasFormulaBreakdown voltage relative to airMolecular weight (g/mol)Density* (g/L) ODP GWP Electron-attachingProperties
Sulfur hexafluoride SF
6
3.0146.066.16422800The most popular insulating gas. It is dense and rich in fluorine, which is a good discharge quencher. Good cooling properties. Excellent arc quenching. Corrosive decomposition products. Although most of the decomposition products tend to quickly re-form SF
6
, arcing or corona can produce disulfur decafluoride (S
2
F
10
), a highly toxic gas, with toxicity similar to phosgene. Sulfur hexafluoride in an electric arc may also react with other materials and produce toxic compounds, e.g. beryllium fluoride from beryllium oxide ceramics. Frequently used in mixtures with e.g. nitrogen or air.
Nitrogen N
2
1.15281.251notOften used at high pressure. Does not facilitate combustion. Can be used with 10–20% of SF6 as a lower-cost alternative to SF6. Can be used standalone or in combination with CO2. Non-electron attaching, efficient in slowing electrons.
Air 29/mixture11.2Breakdown voltage 30 kV/cm at 1 atm. Very well-researched. When subjected to an electrical discharge, forms corrosive nitrogen oxides and other compounds, especially in presence of water. Corrosive decomposition products. Can facilitate combustion, especially when compressed.
Ammonia NH
3
117.0310.86
Carbon dioxide CO
2
0.9544.011.9771weak
Carbon monoxide CO1.2 [4] weakEffective in slowing electrons. Toxic.
Hydrogen sulfide H
2
S
0.934.0821.363
Oxygen O
2
0.8532.01.429Very effectively facilitates combustion. Dangerous especially when high-concentration or compressed.
Chlorine Cl
2
0.8570.93.2
Hydrogen H
2
0.652.0160.09virtually notLow breakdown voltage but high thermal capacity and very low viscosity. Used for cooling of e.g. hydrogen-cooled turbogenerators. Handling and safety problems. Very fast deexcitation, can be used in high repetition rate spark gaps and fast thyratrons.
Sulfur dioxide SO
2
0.3064.072.551
Nitrous oxide N
2
O
~1.3weakWeakly electron-attaching. Efficient in slowing electrons. [4]
1,2-Dichlorotetrafluoroethane (R-114)CF
2
ClCF
2
Cl
3.2170.921.455 ?strongSaturated pressure at 23 °C is about 2 atm, yielding breakdown voltage 5.6 times higher than nitrogen at 1 atm. Corrosive decomposition products.
Dichlorodifluoromethane (R-12)CF
2
Cl
2
2.9120.91618100strongVapor pressure 90 psi (6.1 atm) at 23 °C, yielding breakdown voltage 17 times higher than air at 1 atm. Higher breakdown voltages can be achieved by increasing pressure by adding nitrogen. Corrosive decomposition products.
Trifluoromethane CF
3
H
0.8weak
1,1,1,3,3,3-Hexafluoropropane (R-236fa)CF
3
CH
2
CF
3
152.056300strongCorrosive decomposition products.
Carbon tetrafluoride (R-14)CF
4
1.01 [1] 88.03.726500Poor insulator when used alone. In mixture with SF6 somewhat decreases sulfur hexafluoride's dielectric properties, but significantly lowers the mixture's boiling point and prevents condensation at extremely low temperatures. Lowers the cost, toxicity and corrosiveness of pure SF6. [5]
Hexafluoroethane (R-116)C
2
F
6
2.02 [1] 1385.7349200strong
1,1,1,2-Tetrafluoroethane (R-134a)C
2
H
2
F
4
strongPossible alternative of SF6. [6] Its arc-quenching properties are poor, but its dielectric properties are fairly good.
Perfluoropropane (R-218)C
3
F
8
2.2 [1] 1888.17 ?strong
Octafluorocyclobutane (R-C318)C
4
F
8
3.6 [1] 2007.33 ?strongPossible alternative of SF6.
Perfluorobutane (R-3-1-10)C
4
F
10
2.6 [1] 23811.21 ?strong
30% SF
6
/70% air
2.0 [1]
Helium HeNotNon-electron attaching, not efficient in slowing electrons.
Neon Ne0.02 [4] NotNon-electron attaching, not efficient in slowing electrons.
Argon Ar0.2 [4] NotNon-electron attaching, not efficient in slowing electrons.
vacuum High vacuum is used in capacitors and switches. Problems with vacuum maintenance. Higher voltages may lead to production of x-rays. [7] [8]

* The density is approximate; it is normally specified at atmospheric pressure, the temperature may vary, though it is mostly 0 °C.

Related Research Articles

<span class="mw-page-title-main">Insulator (electricity)</span> Material that does not conduct an electric current

An electrical insulator is a material in which electric current does not flow freely. The atoms of the insulator have tightly bound electrons which cannot readily move. Other materials—semiconductors and conductors—conduct electric current more easily. The property that distinguishes an insulator is its resistivity; insulators have higher resistivity than semiconductors or conductors. The most common examples are non-metals.

In physics, the term dielectric strength has the following meanings:

<span class="mw-page-title-main">Geiger–Müller tube</span> Part of a Geiger counter

The Geiger–Müller tube or G–M tube is the sensing element of the Geiger counter instrument used for the detection of ionizing radiation. It is named after Hans Geiger, who invented the principle in 1908, and Walther Müller, who collaborated with Geiger in developing the technique further in 1928 to produce a practical tube that could detect a number of different radiation types.

<span class="mw-page-title-main">Spark gap</span>

A spark gap consists of an arrangement of two conducting electrodes separated by a gap usually filled with a gas such as air, designed to allow an electric spark to pass between the conductors. When the potential difference between the conductors exceeds the breakdown voltage of the gas within the gap, a spark forms, ionizing the gas and drastically reducing its electrical resistance. An electric current then flows until the path of ionized gas is broken or the current reduces below a minimum value called the "holding current". This usually happens when the voltage drops, but in some cases occurs when the heated gas rises, stretching out and then breaking the filament of ionized gas. Usually, the action of ionizing the gas is violent and disruptive, often leading to sound, light and heat.

<span class="mw-page-title-main">Corona discharge</span> Electrical discharge from a high voltage conductor

A corona discharge is an electrical discharge caused by the ionization of a fluid such as air surrounding a conductor carrying a high voltage. It represents a local region where the air has undergone electrical breakdown and become conductive, allowing charge to continuously leak off the conductor into the air. A corona discharge occurs at locations where the strength of the electric field around a conductor exceeds the dielectric strength of the air. It is often seen as a bluish glow in the air adjacent to pointed metal conductors carrying high voltages, and emits light by the same mechanism as a gas discharge lamp.

<span class="mw-page-title-main">Sulfur hexafluoride</span> Chemical compound and greenhouse gas

Sulfur hexafluoride or sulphur hexafluoride (British spelling) is an inorganic compound with the formula SF6. It is a colorless, odorless, non-flammable, and non-toxic gas. SF
6
has an octahedral geometry, consisting of six fluorine atoms attached to a central sulfur atom. It is a hypervalent molecule.

In electrical engineering, partial discharge (PD) is a localized dielectric breakdown (DB) of a small portion of a solid or fluid electrical insulation (EI) system under high voltage (HV) stress. While a corona discharge (CD) is usually revealed by a relatively steady glow or brush discharge (BD) in air, partial discharges within solid insulation system are not visible.

<span class="mw-page-title-main">Lichtenberg figure</span> Branching shapes

A Lichtenberg figure, or Lichtenberg dust figure, is a branching electric discharge that sometimes appears on the surface or in the interior of insulating materials. Lichtenberg figures are often associated with the progressive deterioration of high voltage components and equipment. The study of planar Lichtenberg figures along insulating surfaces and 3D electrical trees within insulating materials often provides engineers with valuable insights for improving the long-term reliability of high-voltage equipment. Lichtenberg figures are now known to occur on or within solids, liquids, and gases during electrical breakdown.

<span class="mw-page-title-main">Gas-filled tube</span> Assembly of electrodes at either end of an insulated tube filled with gas

A gas-filled tube, also commonly known as a discharge tube or formerly as a Plücker tube, is an arrangement of electrodes in a gas within an insulating, temperature-resistant envelope. Gas-filled tubes exploit phenomena related to electric discharge in gases, and operate by ionizing the gas with an applied voltage sufficient to cause electrical conduction by the underlying phenomena of the Townsend discharge. A gas-discharge lamp is an electric light using a gas-filled tube; these include fluorescent lamps, metal-halide lamps, sodium-vapor lamps, and neon lights. Specialized gas-filled tubes such as krytrons, thyratrons, and ignitrons are used as switching devices in electric devices.

<span class="mw-page-title-main">Electrical breakdown</span> Conduction of electricity through an insulator under sufficiently high voltage

In electronics, electrical breakdown or dielectric breakdown is a process that occurs when an electrically insulating material, subjected to a high enough voltage, suddenly becomes a conductor and current flows through it. All insulating materials undergo breakdown when the electric field caused by an applied voltage exceeds the material's dielectric strength. The voltage at which a given insulating object becomes conductive is called its breakdown voltage and, in addition to its dielectric strength, depends on its size and shape, and the location on the object at which the voltage is applied. Under sufficient electrical potential, electrical breakdown can occur within solids, liquids, or gases. However, the specific breakdown mechanisms are different for each kind of dielectric medium.

<span class="mw-page-title-main">High voltage</span> Electrical potential which is large enough to cause damage or injury

High voltage electricity refers to electrical potential large enough to cause injury or damage. In certain industries, high voltage refers to voltage above a certain threshold. Equipment and conductors that carry high voltage warrant special safety requirements and procedures.

<span class="mw-page-title-main">Breakdown voltage</span>

The breakdown voltage of an insulator is the minimum voltage that causes a portion of an insulator to experience electrical breakdown and become electrically conductive.

<span class="mw-page-title-main">Electric arc</span> Electrical breakdown of a gas that produces an ongoing electrical discharge

An electric arc is an electrical breakdown of a gas that produces a prolonged electrical discharge. The current through a normally nonconductive medium such as air produces a plasma; the plasma may produce visible light. An arc discharge is characterized by a lower voltage than a glow discharge and relies on thermionic emission of electrons from the electrodes supporting the arc. An archaic term is voltaic arc, as used in the phrase "voltaic arc lamp".

Isidor Sauers (born 1948) is an Austrian-born American who is a physicist at the Oak Ridge National Laboratory in Tennessee. He is a specialist on the properties of Sulfur hexafluoride (SF6), with an important patent and over 60 peer-reviewed academic papers.

<span class="mw-page-title-main">Disulfur decafluoride</span> Chemical compound

Disulfur decafluoride is a chemical compound with the formula S2F10. It was discovered in 1934 by Denbigh and Whytlaw-Gray. Each sulfur atom of the S2F10 molecule is octahedral, and surrounded by five fluorine atoms and one sulfur atom. The two sulfur atoms are connected by a single bond. In the S2F10 molecule, the oxidation state of each sulfur atoms is +5, but their valency is 6. S2F10 is highly toxic, with toxicity four times that of phosgene.

<span class="mw-page-title-main">Sulfur hexafluoride circuit breaker</span> Switching device used in high voltage power grids

Sulfur hexafluoride circuit breakers protect electrical power stations and distribution systems by interrupting electric currents, when tripped by a protective relay. Instead of oil, air, or a vacuum, a sulfur hexafluoride circuit breaker uses sulfur hexafluoride (SF6) gas to cool and quench the arc on opening a circuit. Advantages over other media include lower operating noise and no emission of hot gases, and relatively low maintenance. Developed in the 1950s and onward, SF6 circuit breakers are widely used in electrical grids at transmission voltages up to 800 kV, as generator circuit breakers, and in distribution systems at voltages up to 35 kV.

<span class="mw-page-title-main">Corona ring</span>

A corona ring, more correctly referred to as an anti-corona ring, is a toroid of conductive material, usually metal, which is attached to a terminal or other irregular hardware piece of high voltage equipment. The purpose of the corona ring is to distribute the electric field gradient and lower its maximum values below the corona threshold, preventing corona discharge. Corona rings are used on very high voltage power transmission insulators and switchgear, and on scientific research apparatus that generates high voltages. A very similar related device, the grading ring, is used around insulators.

Electric discharge in gases occurs when electric current flows through a gaseous medium due to ionization of the gas. Depending on several factors, the discharge may radiate visible light. The properties of electric discharges in gases are studied in connection with design of lighting sources and in the design of high voltage electrical equipment.

A liquid dielectric is a dielectric material in liquid state. Its main purpose is to prevent or rapidly quench electric discharges. Dielectric liquids are used as electrical insulators in high voltage applications, e.g. transformers, capacitors, high voltage cables, and switchgear. Its function is to provide electrical insulation, suppress corona and arcing, and to serve as a coolant.

An excimer lamp is a source of ultraviolet light based on spontaneous emission of excimer (exciplex) molecules.

References

  1. 1 2 3 4 5 6 7 M S Naidu; NAIDU M S (22 November 1999). High Voltage Engineering. McGraw-Hill Professional. pp. 35–. ISBN   978-0-07-136108-8 . Retrieved 17 April 2011.
  2. Paul G. Slade (2008). The vacuum interrupter: theory, design, and application. CRC Press. pp. 433–. ISBN   978-0-8493-9091-3 . Retrieved 17 April 2011.
  3. Ramapriya Parthasarathy Use of Rydberg Atoms as a Microscale Laboratory to Probe Low-Energy Electron-Molecule Interactions
  4. 1 2 3 4 Loucas G. Christophorou Research and Findings on Alternatives to Pure SF6. National Institute of Standards and Technology. Gaithersburg, MD. EPA.gov
  5. Loucas G. Christophorou; James K. Olthoff (1 January 1998). Gaseous Dielectrics VIII. Springer. pp. 45–. ISBN   978-0-306-46056-2 . Retrieved 17 April 2011.
  6. Gaseous dielectrics with low global warming potentials – US Patent Application 20080135817 Description Archived October 13, 2012, at the Wayback Machine . Patentstorm.us (2006-12-12). Retrieved on 2011-08-21.
  7. Hans R. Griem; Ralph Harvey Lovberg (1970). Plasma physics. Academic Press. pp. 201–. ISBN   978-0-12-475909-1 . Retrieved 9 January 2012.
  8. Ravindra Arora; Wolfgang Mosch (25 February 2011). High Voltage and Electrical Insulation Engineering. John Wiley & Sons. pp. 249–. ISBN   978-1-118-00896-6 . Retrieved 9 January 2012.