23S rRNA (adenine1618-N6)-methyltransferase

Last updated
23S rRNA (adenine1618-N6)-methyltransferase
Identifiers
EC no. 2.1.1.181
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

23S rRNA (adenine1618-N6)-methyltransferase (EC 2.1.1.181, rRNA large subunit methyltransferase F, YbiN protein, rlmF (gene), m6A1618 methyltransferase) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (adenine1618-N6)-methyltransferase. [1] This enzyme catalyses the following chemical reaction

S-adenosyl-L-methionine + adenine1618 in 23S rRNA S-adenosyl-L-homocysteine + N6-methyladenine 1618 in 23S rRNA

The recombinant YbiN protein is able to methylate partially deproteinized 50 S ribosomal subunit.

Related Research Articles

<span class="mw-page-title-main">Methyltransferase</span> Group of methylating enzymes

Methyltransferases are a large group of enzymes that all methylate their substrates but can be split into several subclasses based on their structural features. The most common class of methyltransferases is class I, all of which contain a Rossmann fold for binding S-Adenosyl methionine (SAM). Class II methyltransferases contain a SET domain, which are exemplified by SET domain histone methyltransferases, and class III methyltransferases, which are membrane associated. Methyltransferases can also be grouped as different types utilizing different substrates in methyl transfer reactions. These types include protein methyltransferases, DNA/RNA methyltransferases, natural product methyltransferases, and non-SAM dependent methyltransferases. SAM is the classical methyl donor for methyltransferases, however, examples of other methyl donors are seen in nature. The general mechanism for methyl transfer is a SN2-like nucleophilic attack where the methionine sulfur serves as the leaving group and the methyl group attached to it acts as the electrophile that transfers the methyl group to the enzyme substrate. SAM is converted to S-Adenosyl homocysteine (SAH) during this process. The breaking of the SAM-methyl bond and the formation of the substrate-methyl bond happen nearly simultaneously. These enzymatic reactions are found in many pathways and are implicated in genetic diseases, cancer, and metabolic diseases. Another type of methyl transfer is the radical S-Adenosyl methionine (SAM) which is the methylation of unactivated carbon atoms in primary metabolites, proteins, lipids, and RNA.

In enzymology, a rRNA (adenine-N6-)-methyltransferase (EC 2.1.1.48) is an enzyme that catalyzes the chemical reaction

23S rRNA (uridine2552-2'-O)-methyltransferase is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (uridine2552-2'-O-)-methyltransferase. This enzyme catalyses the following chemical reaction

16S rRNA (guanine527-N7)-methyltransferase (EC 2.1.1.170, ribosomal RNA small subunit methyltransferase G, 16S rRNA methyltransferase RsmG, GidB, rsmG (gene)) is an enzyme with systematic name S-adenosyl-L-methionine:16S rRNA (guanine527-N7)-methyltransferase. This enzyme catalyses the following chemical reaction

23S rRNA (guanine2445-N2)-methyltransferase (EC 2.1.1.173, ycbY (gene), rlmL (gene)) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (guanine2445-N2)-methyltransferase. This enzyme catalyses the following chemical reaction

23S rRNA (guanine1835-N2)-methyltransferase (EC 2.1.1.174, ygjO (gene), rlmG (gene), ribosomal RNA large subunit methyltransferase G) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (guanine1835-N2)-methyltransferase. This enzyme catalyses the following chemical reaction

23S rRNA (pseudouridine1915-N3)-methyltransferase (EC 2.1.1.177, YbeA, RlmH, pseudouridine methyltransferase, m3Psi methyltransferase, Psi1915-specific methyltransferase, rRNA large subunit methyltransferase H) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (pseudouridine1915-N3)-methyltransferase. This enzyme catalyses the following chemical reaction

16S rRNA (guanine1405-N7)-methyltransferase (EC 2.1.1.179, methyltransferase Sgm, m7G1405 Mtase, Sgm Mtase, Sgm, sisomicin-gentamicin methyltransferase, sisomicin-gentamicin methylase, GrmA, RmtB, RmtC, ArmA) is an enzyme with systematic name S-adenosyl-L-methionine:16S rRNA (guanine1405-N7)-methyltransferase. This enzyme catalyses the following chemical reaction

16S rRNA (adenine1518-N6/adenine1519-N6)-dimethyltransferase (EC 2.1.1.182, S-adenosylmethionine-6-N',N'-adenosyl (rRNA) dimethyltransferase, KsgA, ksgA methyltransferase) is an enzyme with systematic name S-adenosyl-L-methionine:16S rRNA (adenine1518-N6/adenine1519-N6)-dimethyltransferase. This enzyme catalyses the following chemical reaction

23S rRNA (adenine2085-N6)-dimethyltransferase (EC 2.1.1.184, ErmC' methyltransferase, ermC methylase, ermC 23S rRNA methyltransferase, rRNA:m6A methyltransferase ErmC', ErmC', rRNA methyltransferase ErmC' ) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (adenine2085-N6)-dimethyltransferase. This enzyme catalyses the following chemical reaction

23S rRNA (guanine745-N1)-methyltransferase (EC 2.1.1.187, Rlma(I), Rlma1, 23S rRNA m1G745 methyltransferase, YebH, RlmAI methyltransferase, ribosomal RNA(m1G)-methylase, rRNA(m1G)methylase, RrmA, 23S rRNA:m1G745 methyltransferase) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (guanine745-N1)-methyltransferase. This enzyme catalyses the following chemical reaction

23S rRNA (guanine748-N1)-methyltransferase (EC 2.1.1.188, Rlma(II), Rlma2, 23S rRNA m1G748 methyltransferase, RlmaII, Rlma II, tylosin-resistance methyltransferase RlmA(II), TlrB, rRNA large subunit methyltransferase II) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (guanine748-N1)-methyltransferase. This enzyme catalyses the following chemical reaction

23S rRNA (uracil1939-C5)-methyltransferase (EC 2.1.1.190, RumA, RNA uridine methyltransferase A, YgcA) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (uracil1939-C5)-methyltransferase. This enzyme catalyses the following chemical reaction

23S rRNA (cytosine1962-C5)-methyltransferase (EC 2.1.1.191, RlmI, rRNA large subunit methyltransferase I, YccW) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (cytosine1962-C5)-methyltransferase. This enzyme catalyses the following chemical reaction

23S rRNA (uridine2479-2'-O)-methyltransferase is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (uridine2479-2'-O)-methyltransferase. This enzyme catalyses the following chemical reaction

23S rRNA (guanine2535-N1)-methyltransferase (EC 2.1.1.209, AviRa) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (guanine2535-N1)-methyltransferase. This enzyme catalyses the following chemical reaction

23S rRNA (adenine2503-C8)-methyltransferase (EC 2.1.1.224, Cfr (gene)) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (adenine2503-C8)-methyltransferase. This enzyme catalyses the following chemical reaction

23S rRNA (adenosine1067-2'-O)-methyltransferase is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (adenosine1067-2'-O)-methyltransferase. This enzyme catalyses the following chemical reaction

[Fructose-bisphosphate aldolase]-lysine N-methyltransferase (EC 2.1.1.259) is an enzyme that catalyses the following chemical reaction

23S rRNA (guanine2069-N7)-methyltransferase (EC 2.1.1.264, rlmK (gene), 23S rRNA m7G2069 methyltransferase) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (guanine2069-N7)-methyltransferase. This enzyme catalyses the following chemical reaction

References

  1. Sergiev PV, Serebryakova MV, Bogdanov AA, Dontsova OA (January 2008). "The ybiN gene of Escherichia coli encodes adenine-N6 methyltransferase specific for modification of A1618 of 23 S ribosomal RNA, a methylated residue located close to the ribosomal exit tunnel". Journal of Molecular Biology. 375 (1): 291–300. doi:10.1016/j.jmb.2007.10.051. PMID   18021804.