3'-hydroxy-N-methyl-(S)-coclaurine 4'-O-methyltransferase

Last updated
3'-hydroxy-N-methyl-(S)-coclaurine 4'-O-methyltransferase
Identifiers
EC no. 2.1.1.116
CAS no. 132084-81-2
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, a 3'-hydroxy-N-methyl-(S)-coclaurine 4'-O-methyltransferase (EC 2.1.1.116) is an enzyme that catalyzes the chemical reaction

S-adenosyl-L-methionine + 3'-hydroxy-N-methyl-(S)-coclaurine S-adenosyl-L-homocysteine + (S)-reticuline

Thus, the two substrates of this enzyme are S-adenosyl methionine and 3'-hydroxy-N-methyl-(S)-coclaurine, whereas its two products are S-adenosylhomocysteine and (S)-reticuline.

This enzyme belongs to the family of transferases, specifically those transferring one-carbon group methyltransferases. The systematic name of this enzyme class is S-adenosyl-L-methionine:3'-hydroxy-N-methyl-(S)-coclaurine 4'-O-methyltransferase. This enzyme participates in alkaloid biosynthesis i.

Related Research Articles

<span class="mw-page-title-main">Methyltransferase</span> Group of methylating enzymes

Methyltransferases are a large group of enzymes that all methylate their substrates but can be split into several subclasses based on their structural features. The most common class of methyltransferases is class I, all of which contain a Rossmann fold for binding S-Adenosyl methionine (SAM). Class II methyltransferases contain a SET domain, which are exemplified by SET domain histone methyltransferases, and class III methyltransferases, which are membrane associated. Methyltransferases can also be grouped as different types utilizing different substrates in methyl transfer reactions. These types include protein methyltransferases, DNA/RNA methyltransferases, natural product methyltransferases, and non-SAM dependent methyltransferases. SAM is the classical methyl donor for methyltransferases, however, examples of other methyl donors are seen in nature. The general mechanism for methyl transfer is a SN2-like nucleophilic attack where the methionine sulfur serves as the leaving group and the methyl group attached to it acts as the electrophile that transfers the methyl group to the enzyme substrate. SAM is converted to S-Adenosyl homocysteine (SAH) during this process. The breaking of the SAM-methyl bond and the formation of the substrate-methyl bond happen nearly simultaneously. These enzymatic reactions are found in many pathways and are implicated in genetic diseases, cancer, and metabolic diseases. Another type of methyl transfer is the radical S-Adenosyl methionine (SAM) which is the methylation of unactivated carbon atoms in primary metabolites, proteins, lipids, and RNA.

In enzymology, a 3-demethylubiquinone-9 3-O-methyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a 3-hydroxy-16-methoxy-2,3-dihydrotabersonine N-methyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a caffeate O-methyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a fatty-acid O-methyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a glucuronoxylan 4-O-methyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a hexaprenyldihydroxybenzoate methyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, an inositol 1-methyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, an inositol 3-methyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, an inositol 4-methyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a jasmonate O-methyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a methionine S-methyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Protein-glutamate O-methyltransferase</span>

In enzymology, a protein-glutamate O-methyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a [ribulose-bisphosphate carboxylase]-lysine N-methyltransferase (EC 2.1.1.127) is an enzyme that catalyzes the chemical reaction

In enzymology, a (RS)-norcoclaurine 6-O-methyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a (S)-coclaurine-N-methyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a (S)-tetrahydroprotoberberine N-methyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a tyramine N-methyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Reticuline</span> Chemical compound

Reticuline is a chemical compound found in a variety of plants including Lindera aggregata, Annona squamosa, and Ocotea fasciculata. It is based on the benzylisoquinoline structure.

5-hydroxyfuranocoumarin 5-O-methyltransferase is an enzyme with systematic name S-adenosyl-L-methionine:5-hydroxyfurocoumarin 5-O-methyltransferase. This enzyme catalyses the following chemical reaction

References