4000-series integrated circuits

Last updated
CD4007A on a solderless breadboard Cd4007.jpg
CD4007A on a solderless breadboard

The 4000 series is a CMOS logic family of integrated circuits (ICs) first introduced in 1968 by RCA. [1] It was slowly migrated into the 4000B buffered series after about 1975. [2] It had a much wider supply voltage range than any contemporary logic family (3V to 18V recommended range for "B" series). Almost all IC manufacturers active during this initial era fabricated models for this series. Its naming convention is still in use today.

Contents

History

A very early CD4029A counter IC, in 16-pin ceramic dual in-line package (DIP-16), manufactured by RCA 4029 CMOS.JPG
A very early CD4029A counter IC, in 16-pin ceramic dual in-line package (DIP-16), manufactured by RCA
Colorized IC die and schematics of CD4011BE NAND gate CD4011BE TI detail.jpg
Colorized IC die and schematics of CD4011BE NAND gate

The 4000 series was introduced as the CD4000 COS/MOS series in 1968 by RCA [1] as a lower power and more versatile alternative to the 7400 series of transistor-transistor logic (TTL) chips. The logic functions were implemented with the newly introduced Complementary Metal–Oxide–Semiconductor (CMOS) technology. While initially marketed with "COS/MOS" labeling by RCA (which stood for Complementary Symmetry Metal-Oxide Semiconductor), the shorter CMOS terminology emerged as the industry preference to refer to the technology. [3] The first chips in the series were designed by a group led by Albert Medwin. [4]

Wide adoption was initially hindered by the comparatively lower speeds of the designs compared to TTL based designs. Speed limitations were eventually overcome with newer fabrication methods (such as self aligned gates of polysilicon instead of metal). These CMOS variants performed on par with contemporary TTL. The series was extended in the late 1970s and 1980s with new models that were given 45xx and 45xxx designations, but are usually still regarded by engineers as part of the 4000 series. In the 1990s, some manufacturers (e.g. Texas Instruments) ported the 4000 series to newer HCMOS based designs to provide greater speeds.

Design considerations

The 4000 series facilitates simpler circuit design through relatively low power consumption, a wide range of supply voltages, and vastly increased load-driving capability (fanout) compared to TTL. This makes the series ideal for use in prototyping LSI designs. While TTL ICs are similarly modular, these usually lack the symmetrical drive strength of CMOS and may therefore require more consideration of the loads applied on its outputs. Just like with TTL, buffered models can drive higher electrical current (mainly available for I/O-devices like octal latches and three-state drivers) but have a slightly higher risk of introducing ringing (transient oscillations) unless correctly damped or terminated. [5] [6] Many models contain a high level of integration, including fully integrated 7-segment display counters, walking ring counters, and full adders.

Common chips

CD4001B in DIP-14 package
(quad 2-input NOR gate) ANT Nachrichtentechnik DBT-03 - National Semiconductor CD4001BCJ-0020.jpg
CD4001B in DIP-14 package
(quad 2-input NOR gate)
CD4001B pinout. Red is power, green is inputs, blue is outputs 4001 Pinout.svg
CD4001B pinout. Red is power, green is inputs, blue is outputs
CD4001B functional diagram (quad 2-in NOR gate) 4001 Functional Diagram.svg
CD4001B functional diagram (quad 2-in NOR gate)
Logic gates
Flip-flops
Counters
Decoders
Timers
Analog

See also

Related Research Articles

In digital logic and computing, a counter is a device which stores the number of times a particular event or process has occurred, often in relationship to a clock. The most common type is a sequential digital logic circuit with an input line called the clock and multiple output lines. The values on the output lines represent a number in the binary or BCD number system. Each pulse applied to the clock input increments or decrements the number in the counter.

<span class="mw-page-title-main">Integrated circuit</span> Electronic circuit formed on a small, flat piece of semiconductor material

An integrated circuit (IC), also known as a microchip, computer chip, or simply chip, is a small electronic device made up of multiple interconnected electronic components such as transistors, resistors, and capacitors. These components are etched onto a small piece of semiconductor material, usually silicon. Integrated circuits are used in a wide range of electronic devices, including computers, smartphones, and televisions, to perform various functions such as processing and storing information. They have greatly impacted the field of electronics by enabling device miniaturization and enhanced functionality.

<span class="mw-page-title-main">Logic gate</span> Device performing a Boolean function

A logic gate is a device that performs a Boolean function, a logical operation performed on one or more binary inputs that produces a single binary output. Depending on the context, the term may refer to an ideal logic gate, one that has, for instance, zero rise time and unlimited fan-out, or it may refer to a non-ideal physical device.

Transistor–transistor logic (TTL) is a logic family built from bipolar junction transistors. Its name signifies that transistors perform both the logic function and the amplifying function, as opposed to earlier resistor–transistor logic (RTL) and diode–transistor logic (DTL).

<span class="mw-page-title-main">CMOS</span> Technology for constructing integrated circuits

Complementary metal–oxide–semiconductor is a type of metal–oxide–semiconductor field-effect transistor (MOSFET) fabrication process that uses complementary and symmetrical pairs of p-type and n-type MOSFETs for logic functions. CMOS technology is used for constructing integrated circuit (IC) chips, including microprocessors, microcontrollers, memory chips, and other digital logic circuits. CMOS technology is also used for analog circuits such as image sensors, data converters, RF circuits, and highly integrated transceivers for many types of communication.

<span class="mw-page-title-main">Clock signal</span> Timing of electronic circuits

In electronics and especially synchronous digital circuits, a clock signal is an electronic logic signal which oscillates between a high and a low state at a constant frequency and is used like a metronome to synchronize actions of digital circuits. In a synchronous logic circuit, the most common type of digital circuit, the clock signal is applied to all storage devices, flip-flops and latches, and causes them all to change state simultaneously, preventing race conditions.

In digital electronics, a binary decoder is a combinational logic circuit that converts binary information from the n coded inputs to a maximum of 2n unique outputs. They are used in a wide variety of applications, including instruction decoding, data multiplexing and data demultiplexing, seven segment displays, and as address decoders for memory and port-mapped I/O.

<span class="mw-page-title-main">7400-series integrated circuits</span> Series of transistor–transistor logic integrated circuits

The 7400 series is a popular logic family of transistor–transistor logic (TTL) integrated circuits (ICs).

In computer engineering, a logic family is one of two related concepts:

<span class="mw-page-title-main">IC power-supply pin</span> Power supply connections for integrated circuits

IC power-supply pins denote a voltage and current supply terminals in electric, electronics engineering, and in integrated circuit design. Integrated circuits (ICs) have at least two pins that connect to the power rails of the circuit in which they are installed. These are known as the power-supply pins. However, the labeling of the pins varies by IC family and manufacturer. The double subscript notation usually corresponds to a first letter in a given IC family (transistors) notation of the terminals.

In digital electronics, a NAND gate (NOT-AND) is a logic gate which produces an output which is false only if all its inputs are true; thus its output is complement to that of an AND gate. A LOW (0) output results only if all the inputs to the gate are HIGH (1); if any input is LOW (0), a HIGH (1) output results. A NAND gate is made using transistors and junction diodes. By De Morgan's laws, a two-input NAND gate's logic may be expressed as , making a NAND gate equivalent to inverters followed by an OR gate.

<span class="mw-page-title-main">Depletion-load NMOS logic</span> Form of digital logic family in integrated circuits

In integrated circuits, depletion-load NMOS is a form of digital logic family that uses only a single power supply voltage, unlike earlier NMOS logic families that needed more than one different power supply voltage. Although manufacturing these integrated circuits required additional processing steps, improved switching speed and the elimination of the extra power supply made this logic family the preferred choice for many microprocessors and other logic elements.

A linear integrated circuit or analog chip is a set of miniature electronic analog circuits formed on a single piece of semiconductor material.

The XNOR gate is a digital logic gate whose function is the logical complement of the Exclusive OR (XOR) gate. It is equivalent to the logical connective from mathematical logic, also known as the material biconditional. The two-input version implements logical equality, behaving according to the truth table to the right, and hence the gate is sometimes called an "equivalence gate". A high output (1) results if both of the inputs to the gate are the same. If one but not both inputs are high (1), a low output (0) results.

In electronics, glue logic is the custom logic circuitry used to interface a number of off-the-shelf integrated circuits. This is often achieved using common, inexpensive 7400- or 4000-series components. In more complex cases, a programmable logic device like a CPLD or FPGA might be used. The falling price of programmable logic devices, combined with their reduced size and power consumption compared to discrete components, is making them common even for simple systems. In addition, programmable logic can be used to hide the exact function of a circuit, in order to prevent a product from being cloned or counterfeited.

A frequency divider, also called a clock divider or scaler or prescaler, is a circuit that takes an input signal of a frequency, , and generates an output signal of a frequency:

AND-OR-invert (AOI) logic and AOI gates are two-level compound logic functions constructed from the combination of one or more AND gates followed by a NOR gate. Construction of AOI cells is particularly efficient using CMOS technology, where the total number of transistor gates can be compared to the same construction using NAND logic or NOR logic. The complement of AOI logic is OR-AND-invert (OAI) logic, where the OR gates precede a NAND gate.

HCMOS is the set of specifications for electrical ratings and characteristics, forming the 74HC00 family, a part of the 7400 series of integrated circuits.

References

  1. 1 2 "1963: Complementary MOS Circuit Configuration is Invented". Computer History Museum . Archived from the original on July 23, 2019.
  2. Marston, Ray (October 2006). "Understanding Digital Logic ICs - Part 4". Nuts and Volts. Archived from the original on November 1, 2016.
  3. "Wright, Maury. Milestones That Mattered: CMOS pioneer developed a precursor to the processor EDN, 6/22/2006". Archived from the original on 2007-09-27. Retrieved 2006-07-01.
  4. R. Jacob Baker (2010). CMOS: Circuit Design, Layout, and Simulation (3rd ed.). John Wiley & Sons. p. 7. ISBN   978-1-118-03823-9.
  5. Understanding Buffered and Unbuffered CD4xxxB Series Device Characteristics. Texas Instruments
  6. Lancaster, Don. CMOS Cookbook, ISBN   0-672-21398-2

Further reading

Periodicals
Books
Historical Documents
Historical Databooks