5-Diphosphomevalonic acid

Last updated
5-Diphosphomevalonic acid
5-diphosphomevalonic acid.svg
Names
IUPAC name
3-Hydroxy-5-(hydroxy-phosphonooxy-phosphoryl)oxy-3-methyl-pentanoic acid
Identifiers
3D model (JSmol)
ChemSpider
MeSH 5-diphosphomevalonic+acid
PubChem CID
Properties
C6H14O10P2
Molar mass 308.117 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)
Infobox references

5-Diphosphomevalonic acid (or mevalonate-5-pyrophosphate, or 5-pyrophosphomevalonate) is an intermediate in the mevalonate pathway.

Mevalonate pathway

The mevalonate pathway, also known as the isoprenoid pathway or HMG-CoA reductase pathway is an essential metabolic pathway present in eukaryotes, archaea, and some bacteria. The pathway produces two five-carbon building blocks called isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), which are used to make isoprenoids, a diverse class of over 30,000 biomolecules such as cholesterol, heme, vitamin K, coenzyme Q10, and all steroid hormones.

Mevalonate pathway Mevalonate pathway.png
Mevalonate pathway

See also

Mevalonic acid chemical compound

Mevalonic acid (MVA) is a key organic compound in biochemistry; the name is a contraction of dihydroxymethylvalerolactone. The carboxylate anion of mevalonic acid, which is the predominant form in biological environments, is known as mevalonate and is of major pharmaceutical importance. Drugs like statins stop the production of mevalonate by inhibiting HMG-CoA reductase.

Phosphomevalonate kinase

Phosphomevalonate kinase is an enzyme in the mevalonate pathway.

Pyrophosphomevalonate decarboxylase

Pyrophosphomevalonate decarboxylase is an enzyme in the mevalonate pathway.

Medical Subject Headings (MeSH) is a comprehensive controlled vocabulary for the purpose of indexing journal articles and books in the life sciences; it serves as a thesaurus that facilitates searching. Created and updated by the United States National Library of Medicine (NLM), it is used by the MEDLINE/PubMed article database and by NLM's catalog of book holdings. MeSH is also used by ClinicalTrials.gov registry to classify which diseases are studied by trials registered in ClinicalTrials.


Related Research Articles

Steroid any organic compound having sterane as a core structure

A steroid is a biologically active organic compound with four rings arranged in a specific molecular configuration. Steroids have two principal biological functions: as important components of cell membranes which alter membrane fluidity; and as signaling molecules. Hundreds of steroids are found in plants, animals and fungi. All steroids are manufactured in cells from the sterols lanosterol (opisthokonts) or cycloartenol (plants). Lanosterol and cycloartenol are derived from the cyclization of the triterpene squalene.

Dimethylallyl pyrophosphate chemical compound

Dimethylallyl pyrophosphate is an isoprenoid precursor. It is a product of both the mevalonate pathway and the MEP pathway of isoprenoid precursor biosynthesis. It is an isomer of isopentenyl pyrophosphate (IPP) and exists in virtually all life forms. The enzyme isopentenyl pyrophosphate isomerase catalyzes isomerization between DMAPP and IPP.

Methoxsalen chemical compound

Methoxsalen is a drug used to treat psoriasis, eczema, vitiligo, and some cutaneous lymphomas in conjunction with exposing the skin to UVA light from lamps or sunlight. Methoxsalen modifies the way skin cells receive the UVA radiation, allegedly clearing up the disease. The dosage comes in 10 mg tablets, which are taken in the amount of 30 mg 75 minutes before a PUVA light treatment. Levels of individual patient PUVA exposure were originally determined using the Fitzpatrick scale. The scale was developed after patients demonstrated symptoms of phototoxicity after oral ingestion of Methoxsalen followed by PUVA therapy. Chemically, methoxsalen belongs to a class of organic natural molecules known as furanocoumarins. They consist of coumarin annulated with furan. It can also be injected and used topically.

Isopentenyl pyrophosphate chemical compound

Isopentenyl pyrophosphate is an isoprenoid precursor. IPP is an intermediate in the classical, HMG-CoA reductase pathway and in the non-mevalonate MEP pathway of isoprenoid precursor biosynthesis. Isoprenoid precursors such as IPP, and its isomer DMAPP, are used by organisms in the biosynthesis of terpenes and terpenoids.

HMG-CoA chemical compound

β-Hydroxy β-methylglutaryl-CoA (HMG-CoA), also known as 3-hydroxy-3-methylglutaryl-CoA, is an intermediate in the mevalonate and ketogenesis pathways. It is formed from acetyl CoA and acetoacetyl CoA by HMG-CoA synthase. The research of Minor J. Coon and Bimal Kumar Bachhawat in the 1950s at University of Illinois led to its discovery.

Mevalonate kinase deficiency Human disease

Mevalonate kinase deficiency (MKD), also called mevalonic aciduria and hyper immunoglobin D syndrome (HIDS) is an autosomal recessive metabolic disorder that disrupts the biosynthesis of cholesterol and isoprenoids.

Acetoacetyl-CoA chemical compound

Acetoacetyl CoA is the precursor of HMG-CoA in the mevalonate pathway, which is essential for cholesterol biosynthesis. It also takes a similar role in the ketone bodies synthesis (ketogenesis) pathway of the liver. In the ketone bodies digestion pathway, it is no longer associated with having HMG-CoA as a product or as a reactant.

Isopentenyl pyrophosphate isomerase, also known as Isopentenyl-diphosphate delta isomerase, is an isomerase that catalyzes the conversion of the relatively un-reactive isopentenyl pyrophosphate (IPP) to the more-reactive electrophile dimethylallyl pyrophosphate (DMAPP). This isomerization is a key step in the biosynthesis of isoprenoids through the mevalonate pathway and the MEP pathway.

Phosphomevalonic acid chemical compound

Phosphomevalonic acid is an intermediate in the Mevalonate pathway.

Mevalonate kinase protein-coding gene in the species Homo sapiens

Mevalonate kinase is an enzyme that in humans is encoded by the MVK gene. Mevalonate kinases are found in a wide variety of organisms from bacteria to mammals. This enzyme catalyzes the following reaction:

Hydroxymethylglutaryl-CoA reductase (NADPH)

In enzymology, a hydroxymethylglutaryl-CoA reductase (NADPH) (EC 1.1.1.34) is an enzyme that catalyzes the chemical reaction

In enzymology, a mevaldate reductase (EC 1.1.1.32) is an enzyme that catalyzes the chemical reaction

Diphosphomevalonate decarboxylase

Diphosphomevalonate decarboxylase (EC 4.1.1.33), most commonly referred to in scientific literature as mevalonate diphosphate decarboxylase, is an enzyme that catalyzes the chemical reaction

Hydroxymethylglutaryl-CoA synthase

In molecular biology, Hydroxymethylglutaryl-CoA synthase or HMG-CoA synthase EC 2.3.3.10 is an enzyme which catalyzes the reaction in which Acetyl-CoA condenses with acetoacetyl-CoA to form 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). It is the second reaction in the mevalonate-dependent isoprenoid biosynthesis pathway. HMG-CoA is an intermediate in both cholesterol synthesis and ketogenesis. This reaction is over-activated in patients with diabetes mellitus type 1 if left untreated, due to prolonged insulin deficiency and the exhaustion of substrates for gluconeogenesis and the TCA cycle, notably oxaloacetate. This results in shunting of excess acetyl-CoA into the ketone synthesis pathway via HMG-CoA, leading to the development of diabetic ketoacidosis.

Aucubin chemical compound

Aucubin is an iridoid glycoside. Iridoids are commonly found in plants and function as defensive compounds. Iridoids decrease the growth rates of many generalist herbivores.

Perillyl alcohol chemical compound

Perillyl alcohol and its precursor limonene are naturally occurring monocyclic terpenes derived from the mevalonate pathway in plants. Perillyl alcohol can be found in the essential oils of various plants, such as lavender, lemongrass, sage, and peppermint. It has a number of manufacturing, household, and medical applications. For example, perillyl alcohol may be used as an ingredient in cleaning products and cosmetics, and as of 2015 it was in development as a potential treatment for people with brain cancer.