A-kinase-anchoring protein

Last updated

The A-kinase anchoring proteins or A-kinase anchor proteins (AKAPs) are a group of structurally diverse proteins, which have the common function of binding to the regulatory subunit of protein kinase A (PKA) and confining the holoenzyme to discrete locations within the cell. [1] [2] At least 20 AKAPs have been cloned. [3] There are at least 50 members, often named after their molecular mass.

Contents

Function

AKAPs act as scaffold proteins wherein they bind PKA and other signaling proteins and physically tether these multi-protein complexes to specific locations, such as the nucleus, in cells. [2] This allows specific targeting of substrates to be regulated by phosphorylation (by PKA) and dephosphorylation (by phosphatases). [2] The dimerization and docking (D/D) domain of the regulatory subunit dimer of PKA binds with the A-kinase binding (AKB) domain (an amphipathic helix) of AKAP. The AKAPs also bind other components, including; phosphodiesterases (PDEs) which break down cAMP, phosphatases which dephosphorylate downstream PKA targets and also other kinases (PKC and MAPK). Some AKAPs are able to bind both regulatory subunits (RI & RII) of PKA and are dual-specific AKAPs (D-AKAP1 and D-AKAP2).

List of AKAPs

Related Research Articles

<span class="mw-page-title-main">Cyclic adenosine monophosphate</span> Cellular second messenger

Cyclic adenosine monophosphate is a second messenger, or cellular signal occurring within cells, that is important in many biological processes. cAMP is a derivative of adenosine triphosphate (ATP) and used for intracellular signal transduction in many different organisms, conveying the cAMP-dependent pathway.

<span class="mw-page-title-main">G protein-coupled receptor</span> Class of cell surface receptors coupled to G-protein-associated intracellular signaling

G protein-coupled receptors (GPCRs), also known as seven-(pass)-transmembrane domain receptors, 7TM receptors, heptahelical receptors, serpentine receptors, and G protein-linked receptors (GPLR), form a large group of evolutionarily related proteins that are cell surface receptors that detect molecules outside the cell and activate cellular responses. They are coupled with G proteins. They pass through the cell membrane seven times in the form of six loops of amino acid residues, which is why they are sometimes referred to as seven-transmembrane receptors. Ligands can bind either to the extracellular N-terminus and loops or to the binding site within transmembrane helices. They are all activated by agonists, although a spontaneous auto-activation of an empty receptor has also been observed.

<span class="mw-page-title-main">Protein kinase A</span> Family of enzymes

In cell biology, protein kinase A (PKA) is a family of serine-threonine kinase whose activity is dependent on cellular levels of cyclic AMP (cAMP). PKA is also known as cAMP-dependent protein kinase. PKA has several functions in the cell, including regulation of glycogen, sugar, and lipid metabolism. It should not be confused with 5'-AMP-activated protein kinase.

Biological crosstalk refers to instances in which one or more components of one signal transduction pathway affects another. This can be achieved through a number of ways with the most common form being crosstalk between proteins of signaling cascades. In these signal transduction pathways, there are often shared components that can interact with either pathway. A more complex instance of crosstalk can be observed with transmembrane crosstalk between the extracellular matrix (ECM) and the cytoskeleton.

<span class="mw-page-title-main">Phosphorylase kinase</span>

Phosphorylase kinase (PhK) is a serine/threonine-specific protein kinase which activates glycogen phosphorylase to release glucose-1-phosphate from glycogen. PhK phosphorylates glycogen phosphorylase at two serine residues, triggering a conformational shift which favors the more active glycogen phosphorylase “a” form over the less active glycogen phosphorylase b.

<span class="mw-page-title-main">PRKACA</span> Protein-coding gene in the species Homo sapiens

The catalytic subunit α of protein kinase A is a key regulatory enzyme that in humans is encoded by the PRKACA gene. This enzyme is responsible for phosphorylating other proteins and substrates, changing their activity. Protein kinase A catalytic subunit is a member of the AGC kinase family, and contributes to the control of cellular processes that include glucose metabolism, cell division, and contextual memory. PKA Cα is part of a larger protein complex that is responsible for controlling when and where proteins are phosphorylated. Defective regulation of PKA holoenzyme activity has been linked to the progression of cardiovascular disease, certain endocrine disorders and cancers.

<span class="mw-page-title-main">PRKAR1A</span> Protein-coding gene in the species Homo sapiens

cAMP-dependent protein kinase type I-alpha regulatory subunit is an enzyme that in humans is encoded by the PRKAR1A gene.

<span class="mw-page-title-main">PRKAR2A</span> Protein-coding gene in the species Homo sapiens

cAMP-dependent protein kinase type II-alpha regulatory subunit is an enzyme that in humans is encoded by the PRKAR2A gene.

<span class="mw-page-title-main">PRKAR2B</span> Protein-coding gene in the species Homo sapiens

cAMP-dependent protein kinase type II-beta regulatory subunit is an enzyme that in humans is encoded by the PRKAR2B gene.

<span class="mw-page-title-main">AKAP13</span> Protein-coding gene in the species Homo sapiens

A-kinase anchor protein 13 is a protein that in humans, is encoded by the AKAP13 gene. This protein is also called AKAP-Lbc because it encodes the lymphocyte blast crisis (Lbc) oncogene, and ARHGEF13/RhoGEF13 because it contains a guanine nucleotide exchange factor (GEF) domain for the RhoA small GTP-binding protein.

<span class="mw-page-title-main">AKAP5</span> Protein-coding gene in the species Homo sapiens

A-kinase anchor protein 5 is a protein that in humans is encoded by the AKAP5 gene.

<span class="mw-page-title-main">AKAP12</span> Protein-coding gene in the species Homo sapiens

A-kinase anchor protein 12, aka AKAP250, is an enzyme that in humans is encoded by the AKAP12 gene.

<span class="mw-page-title-main">AKAP1</span> Protein-coding gene in the species Homo sapiens

A kinase anchor protein 1, mitochondrial is an enzyme that in humans is encoded by the AKAP1 gene.

<span class="mw-page-title-main">AKAP8</span> Protein-coding gene in the species Homo sapiens

A-kinase anchor protein 8 is an enzyme that, in humans, is encoded by the AKAP8 gene.

<span class="mw-page-title-main">AKAP3</span> Protein-coding gene in humans

A-kinase anchor protein 3 is an enzyme that in humans is encoded by the AKAP3 gene.

<span class="mw-page-title-main">AKAP11</span> Protein-coding gene in the species Homo sapiens

A-kinase anchor protein 11 is an enzyme that in humans is encoded by the AKAP11 gene.

<span class="mw-page-title-main">AKAP10</span> Protein-coding gene in the species Homo sapiens

A kinase anchor protein 10, mitochondrial is an enzyme that in humans is encoded by the AKAP10 gene.

<span class="mw-page-title-main">AKAP6</span> Protein-coding gene in the species Homo sapiens

A-kinase anchor protein 6 is an enzyme that in humans is encoded by the AKAP6 gene.

<span class="mw-page-title-main">AKAP4</span> Protein-coding gene in humans

A-kinase anchor protein 4 is a scaffold protein that in humans is encoded by the AKAP4 gene. It involves in the intracellular signalling of protein kinase -A. AKAP4 is called as cancer /testis antigen (CTA), it belongs to a class of tumour linked antigens categories by high expression in germ cells and cancer than normal tissues. AKAP4 is not normally expressed in mRNA and protein level in MM cell line.

<span class="mw-page-title-main">AKAP7</span> Protein-coding gene in the species Homo sapiens

A-kinase anchor protein 7 isoform gamma is an enzyme that in humans is encoded by the AKAP7 gene.

References

  1. Langeberg, LK; Scott, JD (1 August 2005). "A-kinase-anchoring proteins". Journal of Cell Science. 118 (15): 3217–3220. CiteSeerX   10.1.1.621.7853 . doi:10.1242/jcs.02416. PMID   16079273. S2CID   19917481.
  2. 1 2 3 Marin, Wenwen (January 2020). "A-kinase anchoring protein 1 (AKAP1) and its role in some cardiovascular diseases". Journal of Molecular and Cellular Cardiology. 138: 99–109. doi:10.1016/j.yjmcc.2019.11.154. ISSN   0022-2828. PMID   31783032.
  3. Schwartz JH (November 2001). "The many dimensions of cAMP signaling". Proc. Natl. Acad. Sci. U.S.A. 98 (24): 13482–4. Bibcode:2001PNAS...9813482S. doi: 10.1073/pnas.251533998 . PMC   61065 . PMID   11717418.