AKAP13

Last updated
AKAP13
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases AKAP13 , A kinase (PRKA) anchor protein 13, AKAP-13, AKAP-Lbc, ARHGEF13, BRX, HA-3, Ht31, LBC, PRKA13, PROTO-LB, PROTO-LBC, c-lbc, p47, A-kinase anchoring protein 13, A-kinase anchor protein 13
External IDs OMIM: 604686 MGI: 2676556 HomoloGene: 4903 GeneCards: AKAP13
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_144767
NM_001270546
NM_006738
NM_007200
NM_032162

Contents

NM_029332

RefSeq (protein)

NP_001257475
NP_006729
NP_009131

NP_083608

Location (UCSC) Chr 15: 85.38 – 85.75 Mb Chr 7: 75.46 – 75.75 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

A-kinase anchor protein 13 is a protein that in humans, is encoded by the AKAP13 gene. [5] [6] [7] This protein is also called AKAP-Lbc because it encodes the lymphocyte blast crisis (Lbc) oncogene, and ARHGEF13/RhoGEF13 because it contains a guanine nucleotide exchange factor (GEF) domain for the RhoA small GTP-binding protein.

Function

A-kinase anchor protein 13/Rho guanine nucleotide exchange factor 13 is guanine nucleotide exchange factor (GEF) for the RhoA small GTPase protein. [8] [9] Rho is a small GTPase protein that is inactive when bound to the guanine nucleotide GDP. But when acted on by Rho GEF proteins such as AKAP13, this GDP is released and replaced by GTP, leading to the active state of Rho. In this active, GTP-bound conformation, Rho can bind to and activate specific effector proteins and enzymes to regulate cellular functions. [10] In particular, active Rho is a major regulator of the cell actin cytoskeleton. [10]

AKAP13 is a member of a group of four RhoGEF proteins known to be activated by G protein coupled receptors coupled to the G12 and G13 heterotrimeric G proteins. [8] [9] The others are ARHGEF1 (also known as p115-RhoGEF), ARHGEF11 (also known as PDZ-RhoGEF), and ARHGEF12 (also known as LARG). [11] [8] GPCR-regulated AKAP13 (and these related GEF proteins) acts as an effector for G12 and G13 G proteins. Unlike the other three members, AKAP13 does not function as RGS family GTPase-activating proteins (GAPs) to increase the rate of GTP hydrolysis of G12/G13 alpha proteins. [12]

The A-kinase anchor proteins (AKAPs) are a group of structurally diverse proteins that have the common function of binding to the regulatory subunit of protein kinase A (PKA), thus confining the holoenzyme to discrete locations within the cell. The AKAP13 gene encodes a member of the AKAP family since the protein binds tightly to PKA, especially in the heart.

Alternative splicing of this gene results in at least 3 transcript variants encoding different isoforms. All three contain the Dbl oncogene homology (DH) domain plus Pleckstrin homology (PH) domain (DH/PH domain) characteristic of Rho family GEFs, while only the longer two isoforms also contain the AKAP domain. [7] Therefore, these isoforms may function as scaffolding proteins to coordinate Rho signaling and protein kinase A signaling.

Interactions

AKAP13 has been shown to interact with:

See also

Related Research Articles

GTPases are a large family of hydrolase enzymes that bind to the nucleotide guanosine triphosphate (GTP) and hydrolyze it to guanosine diphosphate (GDP). The GTP binding and hydrolysis takes place in the highly conserved P-loop "G domain", a protein domain common to many GTPases.

<span class="mw-page-title-main">RHOB</span> Protein-coding gene in the species Homo sapiens

Ras homolog gene family, member B, also known as RHOB, is a protein which in humans is encoded by the RHOB gene.

<span class="mw-page-title-main">Transforming protein RhoA</span> Protein and coding gene in humans

Transforming protein RhoA, also known as Ras homolog family member A (RhoA), is a small GTPase protein in the Rho family of GTPases that in humans is encoded by the RHOA gene. While the effects of RhoA activity are not all well known, it is primarily associated with cytoskeleton regulation, mostly actin stress fibers formation and actomyosin contractility. It acts upon several effectors. Among them, ROCK1 and DIAPH1 are the best described. RhoA, and the other Rho GTPases, are part of a larger family of related proteins known as the Ras superfamily, a family of proteins involved in the regulation and timing of cell division. RhoA is one of the oldest Rho GTPases, with homologues present in the genomes since 1.5 billion years. As a consequence, RhoA is somehow involved in many cellular processes which emerged throughout evolution. RhoA specifically is regarded as a prominent regulatory factor in other functions such as the regulation of cytoskeletal dynamics, transcription, cell cycle progression and cell transformation.

<span class="mw-page-title-main">RAP1A</span> Protein-coding gene in the species Homo sapiens

Ras-related protein Rap-1A is a protein that in humans is encoded by the RAP1A gene.

<span class="mw-page-title-main">T-cell lymphoma invasion and metastasis-inducing protein 1</span> Protein-coding gene in the species Homo sapiens

Rho guanine nucleotide exchange factor TIAM1 is a protein that in humans is encoded by the TIAM1 gene.

<span class="mw-page-title-main">PRKAR2A</span> Protein-coding gene in the species Homo sapiens

cAMP-dependent protein kinase type II-alpha regulatory subunit is an enzyme that in humans is encoded by the PRKAR2A gene.

<span class="mw-page-title-main">RhoGEF domain</span> Protein domain

RhoGEF domain describes two distinct structural domains with guanine nucleotide exchange factor (GEF) activity to regulate small GTPases in the Rho family. Rho small GTPases are inactive when bound to GDP but active when bound to GTP; RhoGEF domains in proteins are able to promote GDP release and GTP binding to activate specific Rho family members, including RhoA, Rac1 and Cdc42.

<span class="mw-page-title-main">ARHGEF7</span> Protein-coding gene in the species Homo sapiens

Rho guanine nucleotide exchange factor 7 is a protein that in humans is encoded by the ARHGEF7 gene.

<span class="mw-page-title-main">ARHGEF6</span> Protein-coding gene in humans

Rho guanine nucleotide exchange factor 6 is a protein that, in humans, is encoded by the ARHGEF6 gene.

<span class="mw-page-title-main">RAP2A</span> Protein-coding gene in the species Homo sapiens

Ras-related protein Rap-2a is a protein that in humans is encoded by the RAP2A gene. RAP2A is a member of the Ras-related protein family.

<span class="mw-page-title-main">ARHGEF1</span> Protein-coding gene in the species Homo sapiens

Rho guanine nucleotide exchange factor 1 is a protein that in humans is encoded by the ARHGEF1 gene. This protein is also called RhoGEF1 or p115-RhoGEF.

<span class="mw-page-title-main">ARHGEF11</span> Protein-coding gene in the species Homo sapiens

Rho guanine nucleotide exchange factor 11 is a protein that in humans is encoded by the ARHGEF11 gene. This protein is also called RhoGEF11 or PDZ-RhoGEF.

<span class="mw-page-title-main">ARHGEF12</span> Protein-coding gene in the species Homo sapiens

Rho guanine nucleotide exchange factor 12 is a protein that in humans is encoded by the ARHGEF12 gene. This protein is also called RhoGEF12 or Leukemia-associated Rho guanine nucleotide exchange factor (LARG).

<span class="mw-page-title-main">RhoG</span> Protein-coding gene in the species Homo sapiens

RhoG is a small monomeric GTP-binding protein, and is an important component of many intracellular signalling pathways. It is a member of the Rac subfamily of the Rho family of small G proteins and is encoded by the gene RHOG.

<span class="mw-page-title-main">MCF2</span> Protein-coding gene in the humans

The DBL proto-oncogene is a protein that in humans is encoded by the MCF2 gene.

<span class="mw-page-title-main">VAV3</span> Protein-coding gene in the species Homo sapiens

Guanine nucleotide exchange factor VAV3 is a protein that in humans is encoded by the VAV3 gene.

<span class="mw-page-title-main">MCF2L</span> Gene found in humans

Guanine nucleotide exchange factor DBS is a protein that in humans is encoded by the MCF2L gene.

<span class="mw-page-title-main">GNA13</span> Protein-coding gene in the species Homo sapiens

Guanine nucleotide-binding protein subunit alpha-13 is a protein that in humans is encoded by the GNA13 gene.

<span class="mw-page-title-main">GNA12</span> Protein-coding gene in the species Homo sapiens

Guanine nucleotide-binding protein subunit alpha-12 is a protein that in humans is encoded by the GNA12 gene.

<span class="mw-page-title-main">PLEKHG2</span> Protein-coding gene in the species Homo sapiens

Pleckstrin homology domain containing, family G member 2 (PLEKHG2) is a protein that in humans is encoded by the PLEKHG2 gene. It is sometimes written as ARHGEF42, FLJ00018.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000170776 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000066406 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 Rubino D, Driggers P, Arbit D, Kemp L, Miller B, Coso O, et al. (May 1998). "Characterization of Brx, a novel Dbl family member that modulates estrogen receptor action". Oncogene. 16 (19): 2513–26. doi:10.1038/sj.onc.1201783. PMID   9627117. S2CID   20906586.
  6. Carr DW, Stofko-Hahn RE, Fraser ID, Bishop SM, Acott TS, Brennan RG, Scott JD (August 1991). "Interaction of the regulatory subunit (RII) of cAMP-dependent protein kinase with RII-anchoring proteins occurs through an amphipathic helix binding motif". The Journal of Biological Chemistry. 266 (22): 14188–92. doi: 10.1016/S0021-9258(18)98665-5 . PMID   1860836.
  7. 1 2 "Entrez Gene: AKAP13 A kinase (PRKA) anchor protein 13".
  8. 1 2 3 Diviani D, Soderling J, Scott JD (November 2001). "AKAP-Lbc anchors protein kinase A and nucleates Galpha 12-selective Rho-mediated stress fiber formation". The Journal of Biological Chemistry. 276 (47): 44247–57. doi: 10.1074/jbc.M106629200 . PMID   11546812.
  9. 1 2 3 4 Dutt P, Nguyen N, Toksoz D (February 2004). "Role of Lbc RhoGEF in Galpha12/13-induced signals to Rho GTPase". Cellular Signalling. 16 (2): 201–9. doi:10.1016/S0898-6568(03)00132-3. PMID   14636890.
  10. 1 2 Thumkeo D, Watanabe S, Narumiya S (Oct–Nov 2013). "Physiological roles of Rho and Rho effectors in mammals". European Journal of Cell Biology. 92 (10–11): 303–15. doi:10.1016/j.ejcb.2013.09.002. PMID   24183240.
  11. Fukuhara S, Chikumi H, Gutkind JS (March 2001). "RGS-containing RhoGEFs: the missing link between transforming G proteins and Rho?". Oncogene. 20 (13): 1661–8. doi: 10.1038/sj.onc.1204182 . PMID   11313914.
  12. Kozasa T (April 2001). "Regulation of G protein-mediated signal transduction by RGS proteins". Life Sciences. 68 (19–20): 2309–17. doi:10.1016/S0024-3205(01)01020-7. PMID   11358341.
  13. Park B, Nguyen NT, Dutt P, Merdek KD, Bashar M, Sterpetti P, et al. (November 2002). "Association of Lbc Rho guanine nucleotide exchange factor with alpha-catenin-related protein, alpha-catulin/CTNNAL1, supports serum response factor activation". The Journal of Biological Chemistry. 277 (47): 45361–70. doi: 10.1074/jbc.M202447200 . PMID   12270917.
  14. Alto NM, Soderling SH, Hoshi N, Langeberg LK, Fayos R, Jennings PA, Scott JD (April 2003). "Bioinformatic design of A-kinase anchoring protein-in silico: a potent and selective peptide antagonist of type II protein kinase A anchoring". Proceedings of the National Academy of Sciences of the United States of America. 100 (8): 4445–50. Bibcode:2003PNAS..100.4445A. doi: 10.1073/pnas.0330734100 . PMC   153575 . PMID   12672969.
  15. Carr DW, Hausken ZE, Fraser ID, Stofko-Hahn RE, Scott JD (July 1992). "Association of the type II cAMP-dependent protein kinase with a human thyroid RII-anchoring protein. Cloning and characterization of the RII-binding domain". The Journal of Biological Chemistry. 267 (19): 13376–82. doi: 10.1016/S0021-9258(18)42221-1 . PMID   1618839.

Further reading