Abacarus hystrix

Last updated

Cereal rust mite
FreeImagefromCSIROEnto AustralianInsectCommonNames Abacarus-hystrix.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Subphylum: Chelicerata
Class: Arachnida
Family: Eriophyidae
Genus: Abacarus
Species:
A. hystrix
Binomial name
Abacarus hystrix
Nalepa, 1896

Abacarus hystrix, the cereal rust mite or grain rust mite, belongs to the family Eriophyidae. They are extremely small with adults measuring up to 1 millimetre (132 inch) in length and only have four legs at the front of the body. Viewing by the human eye requires a 10 – 20X lens. [1] The adult mites are usually yellow but also have been seen to be white or orange. The cereal rust mite was first found on Elymus repens (couch grass), a very common perennial grass species. It has now been found on more than 60 grass species including oats, barley, wheat and ryegrass, found in Europe, North America, South Africa and Australia. [2] [3] Mites migrate primarily through wind movement and are usually found on the highest basal sections of the top two leaf blades. [3] Abacarus hystrix produces up to twenty overlapping generations per year in South Australian perennial pastures, indicating that the species breeds quite rapidly. [4] It has been noted that the cereal rust mite can cause losses in yield of up to 30-70%. [5] [ failed verification ]

Contents

Life cycle

Cereal rust mite eggs are exceptionally small and are placed in leaf vein grooves by the mite. [1] The eggs usually begin hatching at the beginning of spring (March in the Northern Hemisphere and September in the Southern Hemisphere) and once they have reached the juvenile stage, the mites mature very quickly (16–18 days). Once the mites are at the adult stage they often travel to the lower section of the plant where they feed on young tissues. [1] Mites are always present for the full growing season of the plant, but activity has been seen to decrease as the temperature begins to rise, this is because unlike other mite species the cereal rust mite favors cooler temperatures. [1]

Hosts

Impacts of mite on grasses

As a vector

Abacarus hystrix is a vector for two viruses ( Agropyron mosaic and Ryegrass mosaic ) and also causes direct damage to the leaf. [3]

Agropyron Mosaic Virus

Appearance on hosts is associated with each other, but no direct confirmation of transmission. Likely is a vector, but a low-efficiency one. [OP 1]

Ryegrass Mosaic Virus

The effect of RMV - which is only transmitted by this mite [OP 2] - is chlorotic streaks on the leaves. [6] [7] A. hystrix can only transmit it for 24 hours and all motile instars are potential vectors. [OP 2] Overall A. hystrix and RMV have a close relationship. As soon as RMV begins to noticeably degrade host health, the vector will begin to abandon the plant in favor of healthier neighbors - transmitting it again. Chemical control of the mite controls the virus. There are no resistant varieties and little information on genetic sources of resistance that could be used, but there are virus-resistant varieties. [OP 3]

Not a vector of Wheat Streak Mosaic , although does visit and eat from WSMV victims. Likely reason for lack of successful transmission is degradation of the virus particles during digestion. [OP 4]

Feeding

When the mite feeds on grooves of the leaf surface, it prefers the large cells on the smooth bottom of the groove as opposed to the more ridged, small cells of the side walls. [3] Mite feeding causes direct damage to the leaves, which can be noticed as discoloration or “rusting” of the leaf. [8] There are likely specific biotypes for particular hosts. [OP 5]

Eradication and management options

As a precaution, fields should be checked regularly for mites before spring. By the use of a quadrat system, random plants are selected from different locations in the field. When checking, look for eggs and juvenile mites in the specific area of the leaf veins. [1] A potential management option is to reduce the length of the grass in the cooler months. Studies have shown that trimming grasses reduces the number of mites and since the mites are vectors of many viruses, these viruses are spread less quickly. [1] [9] [3]

Related Research Articles

<span class="mw-page-title-main">Rust (fungus)</span> Order of fungi

Rusts are fungal plant pathogens of the order Pucciniales causing plant fungal diseases.

<i>Brome mosaic virus</i> Species of virus

Brome mosaic virus (BMV) is a small, positive-stranded, icosahedral RNA plant virus belonging to the genus Bromovirus, family Bromoviridae, in the Alphavirus-like superfamily.

Barley yellow dwarf (BYD) is a plant disease caused by the barley yellow dwarf virus (BYDV), and is the most widely distributed viral disease of cereals. It affects the economically important crop species barley, oats, wheat, maize, triticale and rice.

<span class="mw-page-title-main">Phyllody</span> Abnormal development of floral parts into leafy structures

Phyllody is the abnormal development of floral parts into leafy structures. It is generally caused by phytoplasma or virus infections, though it may also be because of environmental factors that result in an imbalance in plant hormones. Phyllody causes the affected plant to become partially or entirely sterile, as it is unable to produce normal flowers.

<span class="mw-page-title-main">Eriophyidae</span> Family of mites

Eriophyidae is a family of more than 200 genera of mites, which live as plant parasites, commonly causing galls or other damage to the plant tissues and hence known as gall mites. About 3,600 species have been described, but this is probably less than 10% of the actual number existing in this poorly researched family. They are microscopic mites and are yellow to pinkish white to purplish in color. The mites are worm like, and have only two pairs of legs. Their primary method of population spread is by wind. They affect a wide range of plants, and several are major pest species causing substantial economic damage to crops. Some species, however, are used as biological agents to control weeds and invasive plant species.

<span class="mw-page-title-main">Wheat leaf rust</span> Fungal disease of wheat, most prevalent

Wheat leaf rust is a fungal disease that affects wheat, barley, rye stems, leaves and grains. In temperate zones it is destructive on winter wheat because the pathogen overwinters. Infections can lead up to 20% yield loss. The pathogen is a Puccinia rust fungus. It is the most prevalent of all the wheat rust diseases, occurring in most wheat-growing regions. It causes serious epidemics in North America, Mexico and South America and is a devastating seasonal disease in India. P. triticina is heteroecious, requiring two distinct hosts.

<span class="mw-page-title-main">Cassava mosaic virus</span> Genus of viruses

Cassava mosaic virus is the common name used to refer to any of eleven different species of plant pathogenic virus in the genus Begomovirus. African cassava mosaic virus (ACMV), East African cassava mosaic virus (EACMV), and South African cassava mosaic virus (SACMV) are distinct species of circular single-stranded DNA viruses which are transmitted by whiteflies and primarily infect cassava plants; these have thus far only been reported from Africa. Related species of viruses are found in India and neighbouring islands, though cassava is cultivated in Latin America as well as Southeast Asia. Nine species of cassava-infecting geminiviruses have been identified between Africa and India based on genomic sequencing and phylogenetic analysis. This number is likely to grow due to a high rate of natural transformation associated with CMV.

Barley stripe mosaic virus (BSMV), of genus Hordevirus, is an RNA viral plant pathogen whose main hosts are barley and wheat. The common symptoms for BSMV are yellow streaks or spots, mosaic, leaves and stunted growth. It is spread primarily through infected seed and can be spread through mechanical transfer of an infected and uninfected host. Plants infected with BSMV are more symptomatic in warmer temperatures. Resistant hosts and sterilization of equipment are the best ways to control the spread of the pathogen. BSMV has been known to reduce the yields of barley by up to 25%, but is not a major problem because of resistant varieties of barley.

<i>Cymbidium mosaic virus</i> Species of virus

Cymbidium mosaic virus (CymMV) is a plant pathogenic virus of the family Alphaflexiviridae.

<i>Maize dwarf mosaic virus</i> Species of plant pathogenic virus

Maize dwarf mosaic virus (MDMV) is a pathogenic plant virus of the family Potyviridae. Depending on the corn plant’s growth stage, the virus can have severe implications to the corn plant’s development which can also result in economic consequences to the producer of the crop.

<i>Wheat streak mosaic virus</i> Species of virus

Wheat streak mosaic virus (WSMV) is a plant pathogenic virus of the family Potyviridae that infects plants in the family Poaceae, especially wheat ; it is globally distributed and vectored by the wheat curl mite, particularly in regions where wheat is widely grown. First described in Nebraska in 1922, stunted growth and the eponymous “streaks” of yellowed, non-uniform discoloration are characteristic of WSMV infection. As it has been known to cause 100% crop mortality, WSMV is a subject of ongoing scientific research.

Soil-borne wheat mosaic virus is a rod-shaped plant pathogen that can cause severe stunting and mosaic in susceptible wheat, barley and rye cultivars. The disease has often been misdiagnosed as a nutritional problem, but this has actually allowed in part for the fortuitous visual selection by breeding programs of resistant genotypes. Soil-borne wheat mosaic virus is part of the genus Furovirus. Members of this genus are characterized by rigid rod-shaped particles and positive sense RNA genomes consisting of two molecules that are packaged into separate particles that code for either replication, mobility, structure or defense against the host. The virus is spread by a fungal-like protist, Polymyxa graminis, whose asexual secondary and sexual primary cycles help the virus spread. The disease produces secondary symptoms from the root cell infection. The disease is a serious contributor to loss in crop yield.

<i>Aceria anthocoptes</i> Species of mite

Aceria anthocoptes, also known as the russet mite, rust mite, thistle mite or the Canada thistle mite, is a species of mite that belongs to the family Eriophyidae. It was first described by Alfred Nalepa in 1892.

High plains disease is a viral disease afflicting wheat and maize. It is caused by the negative-sense ssRNA virus High Plains wheat mosaic emaravirus. Symptoms are similar to Wheat streak mosaic virus, with leaf veins showing yellow flecks and streaks, followed by leaf margin purpling in maize. Depending on the timing of infection, stunting and death occur. Plants can be doubly infected with high plains virus and wheat streak mosaic virus.

<i>High Plains wheat mosaic emaravirus</i> Species of virus

High Plains wheat mosaic emaravirus (WMoV), or High Plains virus (HPV) or Maize red stripe virus (MRSV/MRStV) is the causative agent of High plains disease of maize and wheat. It is spread by wheat curl mite, Aceria tosichella, which also transmits Wheat streak mosaic virus. The mite's ability to transmit a number of different viruses to cereal crops make it an economically important agricultural pest. In late June 2017 this virus was first detected in Canada, in Alberta. The Alberta samples were 99% similar to those in the USA. As Wheat streak mosaic virus is already present in Alberta, and coinfection with these two causes even more severe damage, this could cause much higher yield losses.

<i>Aceria tosichella</i> Species of mite

Aceria tosichella, commonly known as the wheat curl mite (WCM), is a global cereal pest and a vector for spreading and transmission of viruses like wheat streak mosaic virus (WSMV) and wheat mosaic virus (WMoV)

Maize lethal necrosis disease is a viral disease affecting maize (corn) predominantly in East Africa, Southeast Asia and South America, which was recognised in 2010. It is caused by simultaneous infection with two viruses, MCMoV and any of several Potyviridae.

<i>Lolium rigidum</i> Species of grass

Lolium rigidum is a species of annual grass. Common names by which it is known include annual ryegrass, a name also given to Italian ryegrass, rigid ryegrass, stiff darnel, Swiss ryegrass and Wimmera ryegrass. It is a native of southern Europe, northern Africa, the Middle East and the Indian subcontinent and is grown as a forage crop, particularly in Australia, where it is also a serious and economically damaging crop weed.

The cardamom mosaic virus (CdMV) is a mosaic virus that affects the production of green cardamom (E. cardamomum). It is a member of the genus Macluravirus (recognized under the family Potyviridae by ICTV in 1988), and is transmitted through aphids (P.caladii) and infected rhizomes, the former in a non-persistent manner.

References

  1. 1 2 3 4 5 6 Whalen, J. and Cissel, B. 2012. Cereal Rust Mite in Timothy. Available at: "Cereal Rust Mite in Timothy | Fact Sheets". Archived from the original on 2013-10-31. Retrieved 2013-10-30.
  2. Skoracka, A. 2008. Quackgrass- and ryegrass-adapted populations of the cereal rust mite, Abacarus hystrix (Acari: Eriophyidae), differ in their potential for wheat, Triticum aestivum, colonization. Bulletin of Entomological Research, 99 pp. 33-39.
  3. 1 2 3 4 5 Gibson, R. 1974. Studies on the feeding behaviour of the eriophyid mite Abacarus hystrix, a vector of grass viruses. Annals of Applied Biology, 78 (3), pp. 213-217. [Accessed: 28 Oct 2013].
  4. Frost, W. 1997. Polyphenic wax production in Abacarus hystrix (Acari: Eriophyidae), and impfications for migratory fitness. Physiological Entomology, 22 pp. 37 - 46.
  5. Fleming, R. 1980. The potential for control of cereal rust by natural enemies. Theoretical Population Biology, 18 (3), pp. 375 - 395.
  6. Mulligan, T. (1960). "The Transmission by Mites, Host-Range and Properties of Ryegrass Mosaic Virus". Annals of Applied Biology. 48 (3): 575–579. doi:10.1111/j.1744-7348.1960.tb03559.x.
  7. Skoracka, Anna (September 2008). "Reproductive barriers between populations of the cereal rust mite Abacarus hystrix confirm their host specialization". Evolutionary Ecology. 22 (5): 607–616. doi:10.1007/s10682-007-9185-5.
  8. Skoracka, Anna (17 December 2009). "Description of Abacarus lolii n. sp. (Prostigmata: Eriophyoidea: Eriophyidae), a cryptic species within a grass–feeding Abacarus complex". International Journal of Acarology. 35 (5): 405–417. doi:10.1080/01647950903292764.
  9. Gibson, R. 1976. Effects of Cutting Height on the Abundance of the Eriophyid Mite Abacarus hystrix (Nalepa) and the Incidence of Ryegrass Mosaic Virus in Ryegrass. Plant Pathology, 25 (3), pp. 152 - 156.
  1. p. 264, "Slykhuis (1962) commonly encountered the eriophyids ...A. hystrix... on naturally diseased plants but was not able to demonstrate transmission by [this] species. Later, Slykhuis (1969) reported that when mites from pure populations of A. hystrix reared on A. repens or wheat infected with AgMV by manual inoculation were blown by fan to proximate healthy wheat plants, a low percentage of the plants became infected. No healthy plants became infected in similar experiments using pure populations of [other suspected vectors]. Catherall and Chamberlain (1975) confirmed spread to healthy plants when air was blown from infected plants infested with A. hystrix. To date no further studies of the role played by A. hystrix in the spread of AgMV have been published, perhaps owing to the relatively low economic importance of the disease."
  2. 1 2 p. 262, "The eriophyid mite A. hystrix is the only known vector of RgMV. According to Mulligan (1960), mites remain inoculative up to 24 hours after removal from infected plants and all active instars are able to transmit the virus."
  3. p. 263,
       "RgMV can spread very quickly. During the first year of the sward more than 70% of ryegrass plants may become infected; but up to 5 years may pass before most or all of the remaining plants become infected (Heard and Chapman, 1986). Abacarus hystrix can walk between leaves and spread through at least one meter of sward during summer and autumn. Wind-borne mites are responsible for more distant spread of the virus (Gibson, 1981). In Wales (Great Britain), colonization of uninfested ryegrass plants occurs from June to October (A'Brook, 1975). The development of populations of A. hystrix on turf grasses (L. perenne, Agrostis tenuis Sibthorp and D. glomerata) was studied at one location in Germany during 4 years. The grasses were cut at 2-3 week intervals from the end of May until the end of August. Multiplication of A. hystrix started in July. Maximum populations were attained during autumn and winter. During spring and summer populations were very low (Proeseler, 1972a). In Great Britain, Gibson (1976) reported fewer A. hystrix on RgMV-infected plants of L. multiflorum than on healthy plants; multiplication was slower on infected plants than on healthy plants, and mites dispersed more readily from infected plants. All measures that restricted populations of A. hystrix also controlled RgMV (Gibson, 1981). Since old plants constitute a major source of both the virus and the vector, it is mandatory to destroy all old ryegrass plants prior to replanting.
       Application of aldicarb to seedbeds or repeated application of sprays of endosulfan or the synthetic pyrethroid fenpropathrin, reduced vector populations and the incidence of infection by RgMV; however, use of aldicarb is especially undesirable, owing to its high mammalian toxicity (Lewis, 1982). Control of A. hystrix by fungal pathogens may offer an alternative means of limiting the effects of RgMV. Lewis and Heard (1982) found A. hystrix parasitized by Hirsutella thompsonii Fisher, Verticillium lecanii (Zimmerman) Viegas and two undescribed species of Hirsutella. According to McCoy and Couch (1979) commercially available H. thompsonii is already used as a bioacaricide for control of the citrus rust mite, Phyllocoptruta oleivora (Ashmead).
       Although little information exists on resistance of ryegrass to A. hystrix, some RgMV-resistant genotypes of ryegrass (especially perennial ryegrasses) exist. Salehuzzanian and Wilkins (1984) and Catherall (1986) described different types of resistance to RgMV, including 1) polygenic inherited resistance to infection, which is effective against all strains of RgMV, 2) post-infection resistance (i.e., resistance to virus multiplication and spread) which is inherited by two recessive genes and is effective against specific RgMV strains, and 3) tolerance. The polygenic resistance to RgMV possessed by the perennial ryegrass cultivar 'S. 23' was successfully transferred to Italian ryegrass by repeated cycles of backcrossing, polycrossing and selection, resulting in the RgMV-resistant cultivar 'Bb 2113' (Wilkins, 1987)."
  4. p. 261, "He also examined A. hystrix (a non-vector of WSMV) that had fed on WSMV-infected plants and found small numbers of WSMV particles in the posterior midgut. Such particles appeared degraded and shorter than typical WSMV particles found in the gut of A. tulipae."
  5. p. 262-3, "According to Keifer (1945), A. hystrix is widely distributed on perennial grasses throughout the Northern Hemisphere. Nonetheless, the inability of A. hystrix from ryegrass to colonize other graminaceous species including timothy, maize, barley, oats, and wheat (Gibson 1974) suggests the existence of biotypes adapted to specific members of the Poaceae."