Acutuncus

Last updated

Acutuncus antarcticus
Tardigrade Acutuncus Antarcticus.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Tardigrada
Class: Eutardigrada
Order: Parachela
Family: Hypsibiidae
Genus: Acutuncus
Pilato & Binda, 1997
Species:
A. antarcticus
Binomial name
Acutuncus antarcticus
(Richters, 1904)

Acutuncus is a genus of tardigrades containing a single species, Acutuncus antarcticus. Tardigrades, which are eight-legged micro-animals, are commonly referred to as water bears or moss piglets and are found all over the world in varying extreme habitats. First discovered in 1904 and originally named Hypsibius antarcticus, Acutuncus antarcticus is the most abundant tardigrade species in Antarctica. [1]

Contents

Morphology

The body size of this species varies from 373.8 - 452.9 μm long, having a smooth cuticle and segmented body that appears white or transparent, and four pairs of legs with claws. [2] The intestines may appear green in color, due to a herbivorous diet consisting but not limited to cyanobacteria and green algae. A. antarcticus have relatively large eyes and an anterior mouth.

Life History

Acutuncus antarcticus has a mean lifespan of 69 days, with some individuals living up to a recorded 161 days, and are reproductively successful until death. [3] Similar to other species of tardigrade, A. antarcticus can enter a state of cryptobiosis. Cryptobiosis is a physiological state in which an organism's metabolic activity decreases to a nearly undetectable level as a mechanism to avoid lethal environmental circumstances such as anaerobic conditions, exposure to toxins, desiccation, or freezing. A. antarcticus most commonly undergoes anhydrobiosis in the absence of sufficient water, typically resulting from water freezing. Rehydration occurs when individuals come into contact with water. Both eggs and adult tardigrades can undergo cryptobiosis, and can be reproductively successful after rehydration. [4]

Reproduction

Eggs are laid freely, usually in clusters. They are mostly white and round, but sometimes they are slightly oval shaped. On rare occasions, eggs are laid into the exuviae, which is sloughed skin. [2] The total diameter of the eggs can range from 66 to 103 μm.

The first oviposition event, wherein eggs are laid, is typically observed at an age of 9 to 10 days, however this can range from an age of 6 to 11 days. [3] Clutch size is normally 3 to 6 eggs with a range from 1 to 6 eggs, and there is an average egg development time of 10 days. [4] Clutch size starts with about 2 eggs during the initial reproductive events, and increases quickly to the maximum average clutch size at 30 days. [3] The number of oviposition events varies drastically depending on how long the individual lives; once reproductive age is reached, the interval between oviposition events is 5 to 8 days. [3]

Habitat and Climate Change

Acutuncus antarcticus lives in Antarctica, and South Georgia Island and the South Sandwich Islands. [5] This species is found in terrestrial, marine and freshwater habitats, but are most commonly found in terrestrial habitats living in mosses, lichens, grasses, algae, soil and cyanophytan mats. [6] [7] They are most commonly found in terrestrial habitats due to their anhydrobiosis and cryobiosis abilities, both methods of cryptobiosis. Studies have linked anhydrobiosis with Acutuncus antarcticus ability to withstand freezing temperatures. [8] Cryptobiosis is a reversible metabolic state induced by detrimental environmental factors to help keep the creature alive, which scientists believe involves the synthesis of bioprotectants like selective carbohydrates and proteins and antioxidant enzymes and other free radical scavengers. [9] In addition to these two survival strategies, tardigrades have also been speculated to use specialized DNA repair mechanisms and osmoregulations to help them survive extreme conditions. These include: extreme tolerance to environmental stress, tolerance to high levels of ionizing radiation, tolerance to extreme changes in external salinity and extremely low temperatures by supercooling to below -20 degrees Celsius. [9] This extreme survival ability is a common trait among micrometazoons like nematodes, tardigrades, and rotifers. One outstanding case in 2015 demonstrated a frozen moss sample from 1983 that contained tardigrades. From this sample, 2 tardigrades and 1 egg survived, despite being placed in -20 degrees Celsius for 30.5 years. These surviving tardigrades and tardigrade eggs were Acutuncus antarcticus, giving them the longest record of survival for tardigrades. [4]

It is speculated that climate change could affect the Acutuncus antarcticus. Experimentation with pan-Antarctic Acutuncus antarcticus and exposure to UV radiation, extreme temperatures, and desiccation show how the species responds to these factors. [10] Hydrated and desiccated tagridades were able to tolerate UV radiation, with desiccated targridades being the most successful in tolerating UV radiation. The survivorship of both groups were negatively affected when exposed to a combination of extreme temperature and UV radiation, with hydrated targridades being more successful in tolerating the temperature and UV radiation changes. It was also found that UV radiation has an effect on the reproductive abilities of both groups; the targridades exposed to UV radiation had an increase in egg reabsorption and teratological events. It was concluded that climate change will negatively affect Acutuncus antarcticus. Since climate change will occur gradually, unlike in the experimental conditions, Acutuncus antarcticus may have a better chance of adapting to the changes caused by climate change.

Related Research Articles

Radioresistance is the level of ionizing radiation that organisms are able to withstand.

<span class="mw-page-title-main">Cryptobiosis</span> Metabolic state of life

Cryptobiosis or anabiosis is a metabolic state in extremophilic organisms in response to adverse environmental conditions such as desiccation, freezing, and oxygen deficiency. In the cryptobiotic state, all measurable metabolic processes stop, preventing reproduction, development, and repair. When environmental conditions return to being hospitable, the organism will return to its metabolic state of life as it was prior to cryptobiosis.

Polar ecology is the relationship between plants and animals in a polar environment. Polar environments are in the Arctic and Antarctic regions. Arctic regions are in the Northern Hemisphere, and it contains land and the islands that surrounds it. Antarctica is in the Southern Hemisphere and it also contains the land mass, surrounding islands and the ocean. Polar regions also contain the subantarctic and subarctic zone which separate the polar regions from the temperate regions. Antarctica and the Arctic lie in the polar circles. The polar circles are imaginary lines shown on maps to be the areas that receives less sunlight due to less radiation. These areas either receive sunlight or shade 24 hours a day because of the earth's tilt. Plants and animals in the polar regions are able to withstand living in harsh weather conditions but are facing environmental threats that limit their survival.

<i>Belgica antarctica</i> Species of fly

Belgica antarctica, the Antarctic midge, is a species of flightless midge, endemic to the continent of Antarctica. At 2–6 mm (0.08–0.2 in) long, it is the largest purely terrestrial animal native to the continent. It also has the smallest known insect genome as of 2014, with only 99 million base pairs of nucleotides and about 13500 genes. It is the only insect that can survive year-round in Antarctica.

<span class="mw-page-title-main">Eurytherm</span> Organism tolerant of a wide temperature range

A eurytherm is an organism, often an endotherm, that can function at a wide range of ambient temperatures. To be considered a eurytherm, all stages of an organism's life cycle must be considered, including juvenile and larval stages. These wide ranges of tolerable temperatures are directly derived from the tolerance of a given eurythermal organism's proteins. Extreme examples of eurytherms include Tardigrades (Tardigrada), the desert pupfish, and green crabs, however, nearly all mammals, including humans, are considered eurytherms. Eurythermy can be an evolutionary advantage: adaptations to cold temperatures, called cold-eurythemy, are seen as essential for the survival of species during ice ages. In addition, the ability to survive in a wide range of temperatures increases a species' ability to inhabit other areas, an advantage for natural selection.

Osmoprotectants or compatible solutes are small organic molecules with neutral charge and low toxicity at high concentrations that act as osmolytes and help organisms survive extreme osmotic stress. Osmoprotectants can be placed in three chemical classes: betaines and associated molecules, sugars and polyols, and amino acids. These molecules accumulate in cells and balance the osmotic difference between the cell's surroundings and the cytosol. In plants, their accumulation can increase survival during stresses such as drought. In extreme cases, such as in bdelloid rotifers, tardigrades, brine shrimp, and nematodes, these molecules can allow cells to survive being completely dried out and let them enter a state of suspended animation called cryptobiosis.

<span class="mw-page-title-main">Tardigrade</span> Phylum of microscopic animals, also known as water bears

Tardigrades, known colloquially as water bears or moss piglets, are a phylum of eight-legged segmented micro-animals. They were first described by the German zoologist Johann August Ephraim Goeze in 1773, who called them Kleiner Wasserbär. In 1777, the Italian biologist Lazzaro Spallanzani named them Tardigrada, which means "slow steppers".

Desiccation tolerance refers to the ability of an organism to withstand or endure extreme dryness, or drought-like conditions. Plants and animals living in arid or periodically arid environments such as temporary streams or ponds may face the challenge of desiccation, therefore physiological or behavioral adaptations to withstand these periods are necessary to ensure survival. In particular, insects occupy a wide range of ecologically diverse niches and, so, exhibit a variety of strategies to avoid desiccation.

<span class="mw-page-title-main">Antarctic microorganism</span>

Antarctica is one of the most physically and chemically extreme terrestrial environments to be inhabited by lifeforms. The largest plants are mosses, and the largest animals that do not leave the continent are a few species of insects.

<i>Ramazzottius</i> Genus of tardigrades

Ramazzottius is a genus of water bear or moss piglet, a tardigrade in the class Eutardigrada.

<i>Milnesium tardigradum</i> Species of tardigrade

Milnesium tardigradum is a cosmopolitan species of tardigrade that can be found in a diverse range of environments. It has also been found in the sea around Antarctica. M. tardigradum was described by Louis Michel François Doyère in 1840. It contains unidentified osmolytes that could potentially provide important information in the process of cryptobiosis.

Antarctic fish is a common name for a variety of fish that inhabit the Southern Ocean. There are relatively few families in this region, the most species-rich being the Liparidae (snailfishes), followed by Nototheniidae. The latter is one of eight different families that belong to the suborder Notothenioidei of the order Perciformes. They are also called notothenioids, but this name is also used to describe the other three, non-Antarctic families and some of the non-Antarctic genera in the mainly Antarctic families belonging to the suborder.

Dsup is a DNA-associating protein, unique to the tardigrade, that suppresses the occurrence of DNA breaks by radiation. When human HEK293 cells were engineered with Dsup proteins, they showed approximately 40% more tolerance against X-ray radiation.

Tardigrade specific proteins are types of intrinsically disordered proteins specific to tardigrades. These proteins help tardigrades survive desiccation, one of the adaptations which contribute to tardigrade's extremotolerant nature. Tardigrade specific proteins are strongly influenced by their environment, leading to adaptive malleability across a variety of extreme abiotic environments.

Bertolanius is a genus of tardigrades belonging to the family Eohypsibiidae.

<i>Milnesium alpigenum</i> Species of tardigrade

Milnesium alpigenum is a species of tardigrade that falls under the Tardigrada phylum. Like its taxonomic relatives it is an omnivorous predator that feeds on other small organisms, such as algae, rotifers, and nematodes. M. alpigenum was discovered by Christian Gottfried Ehrenberg in 1853. It is very closely related to Milnesium tardigradum along with many other species from the Milnesium genus.

Panagrolaimus superbus is a species of terrestrial free-living nematode (roundworm). P. superbus, like other species within the Panagrolaimus genus, exhibits the ability to enter anhydrobiosis for extended periods of time.

<span class="mw-page-title-main">Tardigrades on the Moon</span> Possibly lunar-lander-crash-surviving tardigrades

On April 11, 2019, the Israeli spacecraft Beresheet crashed into the Moon during a failed landing attempt. Its payload included a few thousand tardigrades. Initial reports suggested they could have survived the crash landing. If any of them did survive, they would be the tenth species to reach the surface of the Moon, after humans, brought by the American Apollo program, and fruit flies, silkworms, cottonseed, potato, rapeseed, Arabidopsis thaliana, as well as yeast--the latter seven all brought to the moon by China's Chang'e 4.

We believe the chances of survival for the tardigrades... are extremely high.

<i>Buellia frigida</i> Species of lichen

Buellia frigida is a species of saxicolous (rock-dwelling), crustose lichen in the family Caliciaceae. It was first described from samples collected from the British National Antarctic Expedition of 1901–1904. It is endemic to maritime and continental Antarctica, where it is common and widespread, at altitudes up to about 2,000 m (6,600 ft). The characteristic appearance of this lichen features shades of grey and black divided into small polygonal patterns. The crusts can generally grow up to 7 cm in diameter, although neighbouring individuals may coalesce to form larger crusts. One of the defining characteristics of the lichen is a textured surface with deep cracks, creating the appearance of radiating lobes. These lobes, bordered by shallower fissures, give the lichen a distinctive appearance and textured surface.

References

  1. Tsujimoto, M., Suzuki, A. C. & Imura, S. (2015). "Life history of the Antarctic tardigrade, Acutuncus antarcticus, under a constant laboratory environment". Polar Biology, 38(10), 1575-1581. doi:10.1007/s00300-015-1718-8
  2. 1 2 Kagoshima, H., Imura, S., & Suzuki, A. C. (2013). "Molecular and morphological analysis of an Antarctic tardigrade, Acutuncus antarcticus". Journal of Limnology, 72(1s). doi:10.4081/jlimnol.2013.s1.e
  3. 1 2 3 4 Tsujimoto, M., Komori, O., & Imura, S. (2016). "Effect of lifespan and age on reproductive performance of the tardigrade Acutuncus antarcticus: Minimal reproductive senescence". Hydrobiologia, 772(1), 93-102. doi:10.1007/s10750-016-2643-8
  4. 1 2 3 Tsujimoto, M., Imura, S., & Kanda, H. (2016). "Recovery and reproduction of an Antarctic tardigrade retrieved from a moss sample frozen for over 30 years". Cryobiology, 72(1), 78-81. doi:10.1016/j.cryobiol.2015.12.003
  5. Dastych, 1991 : Redescription of Hypsibius antarcticus (Richters, 1904), with some notes on Hypsibius arcticus (Murray, 1907)(Tardigrada). Mitteilungen aus den Hamburgischen Zoologischen Museum und Institut, vol. 88, p. 141-159 (texte intégral)
  6. World Register of Marine Mammals. (n.d.). Retrieved November 04, 2020, from http://www.marinespecies.org/aphia.php?p=taxdetails
  7. Dastych, H. (1991). "Redescription of Hypsibius antarcticus (Richters, 1904), with some notes on Hypsibius arcticus (Murray, 1907) (Tardigrada)". Mitt. hamb. zool. Mus. Inst. 88:141-159
  8. Guidetti, R., Altiero, T., Bertolani, R., Grazioso, P., & Rebecchi, L. (2011). "Survival of freezing by hydrated tardigrades inhabiting terrestrial and freshwater habitats". Zoology, 114(2), 123-128. doi:10.1016/j.zool.2010.11.005
  9. 1 2 Møbjerg, N., Halberg, K. A., Jørgensen, A., Persson, D., Bjørn, M., Ramløv, H., & Kristensen, R. M. (2011). "Survival in extreme environments - on the current knowledge of adaptations in tardigrades". Acta Physiologica, 202(3), 409-420. doi:10.1111/j.1748-1716.2011.02252.x
  10. Giovannini, I., Altiero, T., Guidetti, R., & Rebecchi, L. (2017). "Will the Antarctic Tardigrade Acutuncus antarcticus be able to withstand environmental stresses related to global climate change"? The Journal of Experimental Biology, 221(4). doi:10.1242/jeb.160622