Agroathelia rolfsii

Last updated

Agroathelia rolfsii
Athelia rolfsii.jpg
Sclerotia at base of foliage of eastern redcedar
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Basidiomycota
Class: Agaricomycetes
Order: Amylocorticiales
Genus: Agroathelia
Species:
A. rolfsii
Binomial name
Agroathelia rolfsii
(Sacc.) Redhead & S-T. Mullineux
Synonyms

Athelia rolfsii(Sacc.) C.C. Tu & Kimbrough
Corticium rolfsii(Sacc.) Curzi
Pellicularia rolfsii (Sacc.) E. West
Botryobasidium rolfsii (Sacc.) Venkatar.
Sclerotium rolfsii anamorph Sacc.

Contents

Agroathelia rolfsii is a corticioid fungus in the order Amylocorticiales. It is a facultative plant pathogen and is the causal agent of "southern blight" disease in crops.

Taxonomy

The species was first described in 1911 by Italian mycologist Pier Andrea Saccardo, based on a specimen collected by Peter Henry Rolfs, sent by John A. Stevenson at the US national mycological collection. Rolfs first considered the unnamed fungus to be the cause of tomato blight in Florida and subsequently caused diseases on multiple hosts. The specimens sent to Saccardo were sterile, consisting of hyphae and sclerotia. Saccardo placed the species in the old form genus Sclerotium, naming it Sclerotium rolfsii. It is, however, not a species of Sclerotium in the modern sense.

In 1932, Mario Curzi discovered that the teleomorph (spore-bearing state) was a corticioid fungus and accordingly placed the species in the genus Corticium . Uncertainty on its classification when the broadly defined genus Corticium was being partitioned by taxonomists, led to placement in Pellicularia , then Botryobasidium and finally Athelia . Subsequently, it has been shown via phylogenetic analyses of DNA sequences, that Agroathelia rolfsii [1] was a member of the Amylocorticiales and not the Atheliales where it was classified until recently. [2]

Description

The fungus produces effused basidiocarps (fruit bodies) that are smooth and white. Microscopically, they consist of ribbon-like hyphae with clamp connections. Basidia are club-shaped, bearing four smooth, ellipsoid basidiospores, measuring 4–7 by 3–5 μm. Small, brownish sclerotia (hyphal propagules) are also formed, arising from the hyphae. [3]

Diseases

Southern blight

Agroathelia rolfsii occurs in soil as a saprotroph, but can also attack living plants. It has an almost indiscriminate host range, but its capacity to form sclerotia (propagules that remain in the soil) means that it particularly attacks seasonal crops. It mostly occurs in warm soils (above 15 °C (59 °F)) and can be a serious pest of vegetables in tropical and subtropical regions (including Florida, where it was first recognized), causing "southern blight". [4] [5]

Mustard seed fungus

It can also be called mustard seed fungus. [6]

Root rot

Causes a root rot of Cassava. [7]

Disease cycle

The soil-borne fungal pathogen Agroathelia rolfsii is a basidiomycete that typically exists only as mycelium and sclerotia (anamorph: Sclerotium rolfsii, or asexual state). It causes the disease Southern Blight and typically overwinters as sclerotia. [8] The sclerotia is a survival structure composed of a hard rind and cortex containing hyphae and is typically considered the primary inoculum. [9] The pathogen has a very large host range, affecting over 500 plant species (including tomato, onion, snapbean and pea) in the United States of America. [10] The fungus attacks the host crown and stem tissues at the soil line by producing a number of compounds such as oxalic acid, in addition to enzymes that are pectinolytic and cellulolytic. [8] [9] These compounds effectively kill plant tissue and allow the fungus to enter other areas of the plant. [9] After gaining entry, the pathogen uses the plant tissues to produce mycelium (often forming mycelial mats), as well as additional sclerotia. [8] [9] Sclerotia formation occurs when conditions are especially warm and humid, primarily in the summer months in the United States of America. [8] [9] Susceptible plants exhibit stem lesions near the soil line, and thus often wilt and eventually die. [9] [11] Infection caused by Southern Blight is not considered systemic.[ citation needed ]

Environment

Agroathelia rolfsii typically prefers warm, humid climates (whence the name of the disease, Southern Blight) which is required for optimal growth (i.e. to produce mycelium and sclerotia). [12] [8] [11] This makes the disease an important issue in regions such as the Southern United States of America, especially for solanaceous crops. [13] In addition, oxygen rich and acidic soils have also been found to favor growth of the pathogen. [9] Southern Blight can be spread (by way of sclerotia and mycelium) by contaminated farm tools and implements, irrigation systems and infected soil and plant material. [9] [14]

Management

Thus, management of the disease is critical, especially in agricultural regions. Although historically management has been difficult, there are several practical ways to reduce disease pressure. Simply avoiding infected fields is perhaps the most straightforward management technique given the large host range and durability of survival structures (i.e. sclerotia). [9] However, when this is not possible, practicing proper sanitation and implementing effective crop rotations can help. [9] Deep tillage has also been shown to reduce Southern Blight occurrence by burying infected plant tissues and creating an anaerobic environment that hinders pathogen growth. [9] Soil solarization and certain organic amendments (e.g. composted chicken manure and rye-vetch green manure), as well as introducing certain Trichoderma spp. have also been shown to reduce plant death and number of sclerotia produced in the field in tomatoes. [10] [15] [16] In addition to these cultural methods, chemical methods (e.g. fungicides) can also be employed. [13] [9] These methods all disrupt the production of mycelium and sclerotia, thus reducing the spread of disease.

See also

Related Research Articles

<i>Botrytis cinerea</i> Species of fungus

Botrytis cinerea is a necrotrophic fungus that affects many plant species, although its most notable hosts may be wine grapes. In viticulture, it is commonly known as "botrytis bunch rot"; in horticulture, it is usually called "grey mould" or "gray mold".

<span class="mw-page-title-main">Texas root rot</span> Pathogenic fungus

Texas root rot is a disease that is fairly common in Mexico and the southwestern United States resulting in sudden wilt and death of affected plants, usually during the warmer months. It is caused by a soil-borne fungus named Phymatotrichopsis omnivora that attacks the roots of susceptible plants. It was first discovered in 1888 by Pammel and later named by Duggar in 1916.

<span class="mw-page-title-main">Sclerotium</span> Mycelial mass

A sclerotium, is a compact mass of hardened fungal mycelium containing food reserves. One role of sclerotia is to survive environmental extremes. In some higher fungi such as ergot, sclerotia become detached and remain dormant until favorable growth conditions return. Sclerotia initially were mistaken for individual organisms and described as separate species until Louis René Tulasne proved in 1853 that sclerotia are only a stage in the life cycle of some fungi. Further investigation showed that this stage appears in many fungi belonging to many diverse groups. Sclerotia are important in the understanding of the life cycle and reproduction of fungi, as a food source, as medicine, and in agricultural blight management.

<span class="mw-page-title-main">White onion</span> Onion cultivar

White onion or Allium cepa are a cultivar of dry onion which have a distinct light and mild flavour profile. Much like red onions, they have a high sugar and low sulphur content, and thus have a relatively short shelf life. White onions are used in a variety of dishes, such as those of Mexican and European origin. Their uses in dishes often relate to their mild nature, they are often included in dishes to provide a light, fresh and sour taste to dishes and are often added uncooked to dishes such as salads.

<i>Rhizoctonia solani</i> Species of fungus

Rhizoctonia solani is a species of fungus in the order Cantharellales. Basidiocarps are thin, effused, and web-like, but the fungus is more typically encountered in its anamorphic state, as hyphae and sclerotia. The name Rhizoctonia solani is currently applied to a complex of related species that await further research. In its wide sense, Rhizoctonia solani is a facultative plant pathogen with a wide host range and worldwide distribution. It causes various plant diseases such as root rot, damping off, and wire stem. It can also form mycorrhizal associations with orchids.

Alternaria triticina is a fungal plant pathogen that causes leaf blight on wheat. A. triticina is responsible for the largest leaf blight issue in wheat and also causes disease in other major cereal grain crops. It was first identified in India in 1962 and still causes significant yield loss to wheat crops on the Indian subcontinent. The disease is caused by a fungal pathogen and causes necrotic leaf lesions and in severe cases shriveling of the leaves.

<i>Macrophomina phaseolina</i> Species of fungus

Macrophomina phaseolina is a Botryosphaeriaceae plant pathogen fungus that causes damping off, seedling blight, collar rot, stem rot, charcoal rot, basal stem rot, and root rot on many plant species.

<i>Sclerotinia sclerotiorum</i> Species of fungus

Sclerotinia sclerotiorum is a plant pathogenic fungus and can cause a disease called white mold if conditions are conducive. S. sclerotiorum can also be known as cottony rot, watery soft rot, stem rot, drop, crown rot and blossom blight. A key characteristic of this pathogen is its ability to produce black resting structures known as sclerotia and white fuzzy growths of mycelium on the plant it infects. These sclerotia give rise to a fruiting body in the spring that produces spores in a sac which is why fungi in this class are called sac fungi (Ascomycota). This pathogen can occur on many continents and has a wide host range of plants. When S. sclerotiorum is onset in the field by favorable environmental conditions, losses can be great and control measures should be considered.

<i>Ceratobasidium cornigerum</i> Species of fungus

Ceratobasidium cornigerum is a species of fungus in the order Cantharellales. Basidiocarps are thin, spread on the substrate out like a film (effused) and web-like. An anamorphic state is frequently obtained when isolates are cultured. Ceratobasidium cornigerum is saprotrophic, but is also a facultative plant pathogen, causing a number of economically important crop diseases, and an orchid endomycorrhizal associate. The species is genetically diverse and is sometimes treated as a complex of closely related taxa. DNA research shows the species actually belongs within the genus Rhizoctonia.

Magnaporthe salvinii is a fungus known to attack a variety of grass and rice species, including Oryza sativa and Zizania aquatica. Symptoms of fungal infection in plants include small, black, lesions on the leaves that develop into more widespread leaf rot, which then spreads to the stem and causes breakage. As part of its life cycle, the fungus produces sclerotia that persist in dead plant tissue and the soil. Management of the fungus may be effected by tilling the soil, reducing its nitrogen content, or by open field burning, all of which reduce the number of sclerotia, or by the application of a fungicide.

<i>Colletotrichum coccodes</i> Pathogenic fungus

Colletotrichum coccodes is a plant pathogen, which causes anthracnose on tomato and black dot disease of potato. Fungi survive on crop debris and disease emergence is favored by warm temperatures and wet weather.

<span class="mw-page-title-main">Corticiaceae</span> Family of fungi

The Corticiaceae are a family of fungi in the order Corticiales. The family formerly included almost all the corticioid fungi, whether they were related or not, and as such was highly artificial. In its current sense, however, the name Corticiaceae is restricted to a comparatively small group of corticioid genera within the Corticiales.

<i>Ceratobasidium</i> Genus of fungi

Ceratobasidium is a genus of fungi in the order Cantharellales. Basidiocarps are effused and the genus is sometimes grouped among the corticioid fungi, though species also retain features of the heterobasidiomycetes. Anamorphic forms were formerly referred to the genus Ceratorhiza, but this is now considered a synonym of Rhizoctonia. Ceratobasidium species, excluding the type, are also now considered synonymous with Rhizoctonia and some species have been transferred to the latter genus. Species are saprotrophic, but several are also facultative plant pathogens, causing a number of commercially important crop diseases. Some are also endomycorrhizal associates of orchids.

<span class="mw-page-title-main">Amylocorticiales</span> Order of fungi

Amylocorticiales is an order of fungi in the class Agaricomycetes. The order was circumscribed in 2010 to contain mostly resupinate (crust-like) forms that have been referred to genera Anomoporia, Amyloathelia, Amylocorticiellum, Amylocorticium, Amyloxenasma, Anomoloma, Athelopsis, Ceraceomyces, Hypochniciellum, Leptosporomyces and Serpulomyces and the anomalous species, Athelia rolfsii, now classified in its own genus, Agroathelia.

<i>Helicobasidium</i> Genus of fungi


Helicobasidium is a genus of fungi in the subdivision Pucciniomycotina. Basidiocarps are corticioid (patch-forming) and are typically violet to purple. Microscopically they have auricularioid basidia. Asexual anamorphs, formerly referred to the genus Thanatophytum, produce sclerotia. Conidia-bearing anamorphs are parasitic on rust fungi and are currently still referred to the genus Tuberculina.

Snow mold is a type of fungus and a turf disease that damages or kills grass after snow melts, typically in late winter. Its damage is usually concentrated in circles three to twelve inches in diameter, although yards may have many of these circles, sometimes to the point at which it becomes hard to differentiate between different circles. Snow mold comes in two varieties: pink or gray. While it can affect all types of grasses, Kentucky bluegrass and fescue lawns are least affected by snow mold.

Stromatinia cepivora is a fungus in the division Ascomycota. It is the teleomorph of Sclerotium cepivorum, the cause of white rot in onions, garlic, and leeks. The infective sclerotia remain viable in the soil for many years and are stimulated to germinate by the presence of a susceptible crop.

<span class="mw-page-title-main">Collar rot</span> Disease of plants

Collar rot is a symptomatically described disease that is usually caused by any one of various fungal and oomycete plant pathogens. It is present where the pathogen causes a lesion localized at or about the collet between the stem and the root. The lesions develop around the stem eventually forming a "collar". Observationally, collar rot grades into "basal stem rot", and with some pathogens is the first phase of "basal stem rot" often followed by "root rot". Collar rot is most often observed in seedings grown in infected soil. The pathogens that cause collar rot may be species or genera specific. But generalist pathogens such as Agroathelia rolfsii are known to attack over 200 different species. While bacteria caused collar rot is not common, trees infected with Fire blight may develop collar rot. Non-parasitic collar rot may be caused by winter damage.

Black rot on orchids is caused by Pythium and Phytophthora species. Black rot targets a variety of orchids but Cattleya orchids are especially susceptible. Pythium ultimum and Phytophthora cactorum are known to cause black rot in orchids.

<i>Agroathelia</i> Genus of fungi

Agroathelia is a fungal genus currently consisting of one widespread and two other species. Agroathelia rolfsii, the type species, causes serious diseases of cultivated crops such as tomatoes, potatoes, peanuts, bell peppers, and sweet potatoes among many other hosts. It is better known under the names Sclerotium rolfsii or Athelia rolfsii.

References

  1. Redhead SA, Mullineux ST (2023). "Nomenclatural novelties". Index Fungorum. 550: 1.
  2. Binder M, Larsson KH, Matheny PB, Hibbett DS (2010). "Amylocorticiales ord. nov. and Jaapiales ord. nov.: early diverging clades of Agaricomycetidae dominated by corticioid forms". Mycologia. 102 (4): 865–880. doi:10.3852/09-288. PMID   20648753. S2CID   23931256.
  3. Tu CC, Kimbrough JW (1978). "Systematics and phylogeny of fungi in the Rhizoctonia complex". Botanical Gazette . 139 (4): 454–466. doi:10.1086/337021. S2CID   84659778.
  4. Koike ST, Gladders P, Paulus AO (2007). Vegetable diseases: a color handbook. Gulf Professional. p. 448.
  5. Mascarenhas J, Quesada-Ocampo LM (2024). "Diagnostic Guide for Sclerotial Blight and Circular Spot of Sweetpotato". Plant Health Progress. American Phytopathological Society. doi:10.1094/PHP-12-23-0110-DG.
  6. "Southern Blight". UC Statewide IPM Program (UC IPM). Retrieved 6 March 2015.
  7. Mudde Barnabas; Murungi Dickens (2020). "Cassava root rot disease.: Phytophthora spp, Pythium spp., Fusarium spp. Sclerotium rolfsii, Armillaria mellea and Rosellinia necatri;". Pest Management Decision Guide . Pest Management Decision Guides. doi: 10.1079/PWKB.20207800549 . S2CID   254007984.
  8. 1 2 3 4 5 Agrios, G.N. (2005). Plant Pathology. New Delhi: Academic Press.
  9. 1 2 3 4 5 6 7 8 9 10 11 12 Mersha, Z. "Southern Blight - a disease becoming more prevalent in Missouri". Missouri Environment and Garden . Division of Plant Sciences – University of Missouri . Retrieved 11 December 2017.
  10. 1 2 Flores-Moctezuma, H.E; Montes-Belmont, R.; Jiménez-Pérez, A, A.; Nava-Juárez, R, R. (2006). "Pathogenic diversity of Sclerotium rolfsii isolates from Mexico, and potential control of southern blight through solarization and organic amendments". Crop Protection . 25 (3): 195–201. doi:10.1016/j.cropro.2005.04.007.
  11. 1 2 Missouri Botanical Garden. "Crown Rot of Perennials (Southern Blight)". Missouri Botanical Garden. Missouri Botanical Garden . Retrieved 11 December 2017.
  12. Punja, Z.K. (1985). "The Biology, Ecology, and Control of Sclerotium Rolfsii". Annual Review of Phytopathology . 23: 97–127. doi:10.1146/annurev.py.23.090185.000525.
  13. 1 2 Keinath, A.P.; DuBose, V.B. (2017). "Management of southern blight on tomato with SDHI fungicides". Crop Protection . 101 (101): 29–34. doi: 10.1016/j.cropro.2017.07.013 .
  14. Joy, A; Hudson, B. "Southern Blight". University of Wisconsin-Extension . Retrieved 11 December 2017.
  15. Latunde-Dada, A.O. (1993). "Biological control of southern blight disease of tomato caused by Sclerotium rolfsii with simplified mycelial formulations of Trichoderma koningii". Plant Pathology . 42 (4). Wiley-Blackwell: 522–529. doi:10.1111/j.1365-3059.1993.tb01532.x. British Society for Plant Pathology (BSPP).
  16. Liu, B.; Gumpertz, M.L.; Ristaino, J.B. (2007). "Long-term effects of organic and synthetic soil fertility amendments on soil microbial communities and the development of southern blight". Soil Biology and Biochemistry . 39 (9): 2302–2316. doi:10.1016/j.soilbio.2007.04.001.

Commons-logo.svg Media related to Agroathelia rolfsii at Wikimedia Commons