Applications of dual quaternions to 2D geometry

Last updated
Planar quaternion multiplication

In this article, we discuss certain applications of the dual quaternion algebra to 2D geometry. At this present time, the article is focused on a 4-dimensional subalgebra of the dual quaternions which we will call the planar quaternions.

Contents

The planar quaternions make up a four-dimensional algebra over the real numbers. [1] [2] Their primary application is in representing rigid body motions in 2D space.

Unlike multiplication of dual numbers or of complex numbers, that of planar quaternions is non-commutative.

Definition

In this article, the set of planar quaternions is denoted . A general element of has the form where , , and are real numbers; is a dual number that squares to zero; and , , and are the standard basis elements of the quaternions.

Multiplication is done in the same way as with the quaternions, but with the additional rule that is nilpotent of index , i.e., , which in some circumstances makes comparable to an infinitesimal number. It follows that the multiplicative inverses of planar quaternions are given by

The set forms a basis of the vector space of planar quaternions, where the scalars are real numbers.

The magnitude of a planar quaternion is defined to be

For applications in computer graphics, the number is commonly represented as the 4-tuple .

Matrix representation

A planar quaternion has the following representation as a 2x2 complex matrix:

It can also be represented as a 2×2 dual number matrix:

The above two matrix representations are related to the Möbius transformations and Laguerre transformations respectively.

Terminology

The algebra discussed in this article is sometimes called the dual complex numbers. This may be a misleading name because it suggests that the algebra should take the form of either:

  1. The dual numbers, but with complex-number entries
  2. The complex numbers, but with dual-number entries

An algebra meeting either description exists. And both descriptions are equivalent. (This is due to the fact that the tensor product of algebras is commutative up to isomorphism). This algebra can be denoted as using ring quotienting. The resulting algebra has a commutative product and is not discussed any further.

Representing rigid body motions

Let

be a unit-length planar quaternion, i.e. we must have that

The Euclidean plane can be represented by the set .

An element on represents the point on the Euclidean plane with Cartesian coordinate .

can be made to act on by

which maps onto some other point on .

We have the following (multiple) polar forms for :

  1. When , the element can be written as
    which denotes a rotation of angle around the point .
  2. When , the element can be written as
    which denotes a translation by vector

Geometric construction

A principled construction of the planar quaternions can be found by first noticing that they are a subset of the dual-quaternions.

There are two geometric interpretations of the dual-quaternions, both of which can be used to derive the action of the planar quaternions on the plane:

See also

Related Research Articles

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices which are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

In algebra, the dual numbers are a hypercomplex number system first introduced in the 19th century. They are expressions of the form a + , where a and b are real numbers, and ε is a symbol taken to satisfy with .

In mathematics, de Moivre's formula states that for any real number x and integer n it holds that

<span class="mw-page-title-main">Quaternion group</span>

In group theory, the quaternion group Q8 (sometimes just denoted by Q) is a non-abelian group of order eight, isomorphic to the eight-element subset of the quaternions under multiplication. It is given by the group presentation

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

<span class="mw-page-title-main">Special unitary group</span> Group of unitary matrices with determinant of 1

In mathematics, the special unitary group of degree n, denoted SU(n), is the Lie group of n × n unitary matrices with determinant 1.

In mathematics, the uniform boundedness principle or Banach–Steinhaus theorem is one of the fundamental results in functional analysis. Together with the Hahn–Banach theorem and the open mapping theorem, it is considered one of the cornerstones of the field. In its basic form, it asserts that for a family of continuous linear operators whose domain is a Banach space, pointwise boundedness is equivalent to uniform boundedness in operator norm.

In mathematics, the isoperimetric inequality is a geometric inequality involving the perimeter of a set and its volume. In -dimensional space the inequality lower bounds the surface area or perimeter of a set by its volume ,

In abstract algebra, the biquaternions are the numbers w + xi + yj + zk, where w, x, y, and z are complex numbers, or variants thereof, and the elements of {1, i, j, k} multiply as in the quaternion group and commute with their coefficients. There are three types of biquaternions corresponding to complex numbers and the variations thereof:

<span class="mw-page-title-main">Screw theory</span> Mathematical formulation of vector pairs used in physics (rigid body dynamics)

Screw theory is the algebraic calculation of pairs of vectors, such as forces and moments or angular and linear velocity, that arise in the kinematics and dynamics of rigid bodies. The mathematical framework was developed by Sir Robert Stawell Ball in 1876 for application in kinematics and statics of mechanisms.

In abstract algebra, the split-quaternions or coquaternions form an algebraic structure introduced by James Cockle in 1849 under the latter name. They form an associative algebra of dimension four over the real numbers.

In mathematics, there are usually many different ways to construct a topological tensor product of two topological vector spaces. For Hilbert spaces or nuclear spaces there is a simple well-behaved theory of tensor products, but for general Banach spaces or locally convex topological vector spaces the theory is notoriously subtle.

<span class="mw-page-title-main">Three-dimensional space</span> Geometric model of the physical space

Three-dimensional space is a geometric setting in which three values are required to determine the position of an element. This is the informal meaning of the term dimension.

In mathematics, the Weyl character formula in representation theory describes the characters of irreducible representations of compact Lie groups in terms of their highest weights. It was proved by Hermann Weyl. There is a closely related formula for the character of an irreducible representation of a semisimple Lie algebra. In Weyl's approach to the representation theory of connected compact Lie groups, the proof of the character formula is a key step in proving that every dominant integral element actually arises as the highest weight of some irreducible representation. Important consequences of the character formula are the Weyl dimension formula and the Kostant multiplicity formula.

<span class="mw-page-title-main">Dual quaternion</span>

In mathematics, the dual quaternions are an 8-dimensional real algebra isomorphic to the tensor product of the quaternions and the dual numbers. Thus, they may be constructed in the same way as the quaternions, except using dual numbers instead of real numbers as coefficients. A dual quaternion can be represented in the form A + εB, where A and B are ordinary quaternions and ε is the dual unit, which satisfies ε2 = 0 and commutes with every element of the algebra. Unlike quaternions, the dual quaternions do not form a division algebra.

In mathematics, specifically the theory of quadratic forms, an ε-quadratic form is a generalization of quadratic forms to skew-symmetric settings and to *-rings; ε = ±1, accordingly for symmetric or skew-symmetric. They are also called -quadratic forms, particularly in the context of surgery theory.

In mathematics, quaternionic analysis is the study of functions with quaternions as the domain and/or range. Such functions can be called functions of a quaternion variable just as functions of a real variable or a complex variable are called.

In representation theory of mathematics, the Waldspurger formula relates the special values of two L-functions of two related admissible irreducible representations. Let k be the base field, f be an automorphic form over k, π be the representation associated via the Jacquet–Langlands correspondence with f. Goro Shimura (1976) proved this formula, when and f is a cusp form; Günter Harder made the same discovery at the same time in an unpublished paper. Marie-France Vignéras (1980) proved this formula, when and f is a newform. Jean-Loup Waldspurger, for whom the formula is named, reproved and generalized the result of Vignéras in 1985 via a totally different method which was widely used thereafter by mathematicians to prove similar formulas.

In mathematics, the injective tensor product of two topological vector spaces (TVSs) was introduced by Alexander Grothendieck and was used by him to define nuclear spaces. An injective tensor product is in general not necessarily complete, so its completion is called the completed injective tensor products. Injective tensor products have applications outside of nuclear spaces. In particular, as described below, up to TVS-isomorphism, many TVSs that are defined for real or complex valued functions, for instance, the Schwartz space or the space of continuously differentiable functions, can be immediately extended to functions valued in a Hausdorff locally convex TVS without any need to extend definitions from real/complex-valued functions to -valued functions.

The Laguerre transformations or axial homographies are an analogue of Möbius transformations over the dual numbers. When studying these transformations, the dual numbers are often interpreted as representing oriented lines on the plane. The Laguerre transformations map lines to lines, and include in particular all isometries of the plane.

References

  1. Matsuda, Genki; Kaji, Shizuo; Ochiai, Hiroyuki (2014), Anjyo, Ken (ed.), "Anti-commutative Dual Complex Numbers and 2D Rigid Transformation", Mathematical Progress in Expressive Image Synthesis I: Extended and Selected Results from the Symposium MEIS2013, Mathematics for Industry, Springer Japan, pp. 131–138, arXiv: 1601.01754 , doi:10.1007/978-4-431-55007-5_17, ISBN   9784431550075, S2CID   2173557
  2. Gunn C. (2011) On the Homogeneous Model of Euclidean Geometry. In: Dorst L., Lasenby J. (eds) Guide to Geometric Algebra in Practice. Springer, London
  3. "Lines in the Euclidean group SE(2)". What's new. 2011-03-06. Retrieved 2019-05-28.
  4. Study, E. (December 1891). "Von den Bewegungen und Umlegungen". Mathematische Annalen. 39 (4): 441–565. doi:10.1007/bf01199824. ISSN   0025-5831. S2CID   115457030.
  5. Sauer, R. (1939). "Dr. Wilhelm Blaschke, Prof. a. d. Universität Hamburg, Ebene Kinematik, eine Vorlesung (Hamburger Math. Einzelschriften, 25. Heft, 1938). 56 S. m. 19 Abb. Leipzig-Berlin 1938, Verlag B. G. Teubner. Preis br. 4 M.". ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik. 19 (2): 127. Bibcode:1939ZaMM...19R.127S. doi:10.1002/zamm.19390190222. ISSN   0044-2267.