Arch dam

Last updated
The Katse Dam, a 185 m high concrete arch dam in Lesotho. Katse Dam.jpg
The Katse Dam, a 185 m high concrete arch dam in Lesotho.
The Morrow Point Dam is a double-curvature arch dam. Morrowdam.JPG
The Morrow Point Dam is a double-curvature arch dam.
The Idukki Dam in Kerala, India is a double-curvature arch dam Idukki009.jpg
The Idukki Dam in Kerala, India is a double-curvature arch dam

An arch dam is a concrete dam that is curved upstream in plan. [1] The arch dam is designed so that the force of the water against it, known as hydrostatic pressure, presses against the arch, causing the arch to straighten slightly and strengthening the structure as it pushes into its foundation or abutments. An arch dam is most suitable for narrow canyons or gorges with steep walls of stable rock to support the structure and stresses. [2] Since they are thinner than any other dam type, they require much less construction material, making them economical and practical in remote areas.

Contents

Classification

In general, arch dams are classified based on the ratio of the base thickness to the structural height (b/h) as: [1]

Arch dams classified with respect to their structural height are: [1]

History

Shah Abbas Arch near Kurit Dam - 14th century Shah Abbas Arch Dam.jpg
Shāh Abbās Arch near Kurit Dam – 14th century

The development of arch dams throughout history began with the Romans in the 1st century BC and after several designs and techniques were developed, relative uniformity was achieved in the 20th century. The first known arch dam, the Glanum Dam, also known as the Vallon de Baume Dam, was built by the Romans in France and it dates back to the 1st century BC. [3] [4] [5] The dam was about 12 metres (39 ft) high and 18 metres (59 ft) in length. Its radius was about 14 m (46 ft), and it consisted of two masonry walls. The Romans built it to supply nearby Glanum with water.

The Monte Novo Dam in Portugal was another early arch dam built by the Romans in 300 AD. It was 5.7 metres (19 ft) high and 52 m long (171 ft), with a radius of 19 m (62 ft). The curved ends of the dam met with two winged walls that were later supported by two buttresses. The dam also contained two water outlets to drive mills downstream. [6]

The Dara Dam was another arch dam built by the Romans in which the historian Procopius would write of its design: "This barrier was not built in a straight line, but was bent into the shape of a crescent, so that the curve, by lying against the current of the river, might be able to offer still more resistance to the force of the stream." [3]

The Mongols also built arch dams in modern-day Iran. Their earliest was the Kebar Dam built around 1300, which was 26 m (85 ft) high and 55 m (180 ft) long, and had a radius of 35 m (115 ft). Their second dam was built around 1350 and is called the Kurit Dam. After 4 m (13 ft) was added to the dam in 1850, it became 64 m (210 ft) tall and remained the tallest dam in the world until the early 20th century. The Kurit Dam was of masonry design and built in a very narrow canyon. The canyon was so narrow that its crest length is only 44% of its height. The dam is still erect, even though part of its lower downstream face fell off. [4]

The Tibi Dam in Tibi, Spain was a post-medieval arch dam built between 1579 and 1594 and the first in Europe since the Romans. The dam was 42.7 metres (140 ft) high and 65 metres (213 ft) long. This arch dam rests on the mountains sides. [4]

In the early 20th century, the world's first variable-radius arch dam was built on the Salmon Creek near Juneau, Alaska. The Salmon Creek Dam's upstream face bulged upstream, which relieved pressure on the stronger, curved lower arches near the abutments. The dam also had a larger toe, which off-set pressure on the upstream heel of the dam, which now curved more downstream. The technology and economical benefits of the Salmon Creek Dam allowed for larger and taller dam designs. The dam was, therefore, revolutionary, and similar designs were soon adopted around the world, in particular by the U.S. Bureau of Reclamation. [4]

In 1920, the Swiss engineer and dam designer Alfred Stucky developed new calculation methods for arch dams, [7] introducing the concept of elasticity during the construction of the Montsalvens arch dam in Switzerland, thereby improving the dam profile in the vertical direction by using a parabolic arch shape instead of a circular arch shape.

The Enguri Dam in the Caucasus of Georgia. Enguri Dam, Georgia.jpg
The Enguri Dam in the Caucasus of Georgia.

Pensacola Dam, completed in the state of Oklahoma in 1940, was considered the longest multiple arch dam in the United States. Designed by W. R. Holway, it has 51 arches. and a maximum height of 150 ft (46 m) above the river bed. The total length of the dam and its sections is 6,565 ft (2,001 m) while the multiple-arch section is 4,284 ft (1,306 m) long and its combination with the spillway sections measure 5,145 ft (1,568 m). Each arch in the dam has a clear span of 60 ft (18 m) and each buttress is 24 ft (7.3 m) wide. [8]

Arch dam designs would continue to test new limits and designs such as the double- and multiple-curve. Alfred Stucky and the U.S. Bureau of Reclamation developed a method of weight and stress distribution in the 1960s, and arch dam construction in the United States would see its last surge then with dams like the 143-meter double-curved Morrow Point Dam in Colorado, completed in 1968. [9] By the late 20th century, arch dam design reached a relative uniformity in design around the world. [4] Currently, the tallest arch dam in the world is the 305 metres (1,001 ft) Jingpin-I Dam in China, which was completed in 2013. [10] The longest multiple arch with buttress dam in the world is the Daniel-Johnson Dam in Quebec, Canada. It is 214 meters (702 ft) high and 1,314 meters (4,311 ft) long across its crest. It was completed in 1968 and put in service in 1970. [11]

Pensacola Dam was one of the last multiple arch types built in the United States. Its NRHP application states that this was because three dams of this type failed: (1) Gem Lake Dam, St. Francis Dam (California), Lake Hodges Dam (California). None of these failures were inherently caused by the multiple arch design. [8]

Design

The design of an arch dam is a very complex process. It starts with an initial dam layout, that is continually improved until the design objectives are achieved within the design criteria. [1] [12]

Loads

The main loads for which an arch dam is designed are: [1] [12]

Other miscellaneous loads that affect a dam include: ice and silt loads, and uplift pressure. [1] [12]

The Idukki Dam in Kerala, India. IdukkiDamConcaveSide.jpg
The Idukki Dam in Kerala, India.

Most often, the arch dam is made of concrete and placed in a V-shaped valley. The foundation or abutments for an arch dam must be very stable and proportionate to the concrete. There are two basic designs for an arch dam: constant-radius dams, which have constant radius of curvature, and variable-radius dams, which have both upstream and downstream curves that systematically decrease in radius below the crest. A dam that is double-curved in both its horizontal and vertical planes may be called a dome dam. Arch dams with more than one contiguous arch or plane are described as multiple-arch dams. Early examples include the Roman Esparragalejo Dam with later examples such as the Daniel-Johnson Dam (1968) and Itaipu Dam (1982). However, as a result of the failure of the Gleno Dam shortly after it was constructed in 1923, the construction of new multiple arch dams has become less popular. [13]

Contraction joints are normally placed every 20 m in the arch dam and are later filled with grout after the control cools and cures. [14]

Types

Constant radii arch dam
the upstream face of the dam has a constant radius making it a linear shape face throughout the height of the dam. But the inner curves their radius reduces as we move down from top elevation to bottom and thus in cross-section it makes a shape of the triangle.
Variable arch dam
the radius of both inner and outer faces of the dam arch varies from bottom to top. The radius of the arch is greatest at the top and lowest at lower elevations. The central angle of the arch is also widened as we move upside.
Constant angle arch dam
this is the most economical in construction. However, for the third type of arch dam stronger foundation is required as it involves overhangs at the abutment sections. The constant angle arch dam is that in which the central angles of the horizontal arch rings are of the same magnitude at all elevations.

Examples of arch dams

El Atazar Dam, near Madrid Presa de El Atazar - 01.jpg
El Atazar Dam, near Madrid

See also

Related Research Articles

<span class="mw-page-title-main">Dam</span> Barrier that stops or restricts the flow of surface or underground streams

A dam is a barrier that stops or restricts the flow of surface water or underground streams. Reservoirs created by dams not only suppress floods but also provide water for activities such as irrigation, human consumption, industrial use, aquaculture, and navigability. Hydropower is often used in conjunction with dams to generate electricity. A dam can also be used to collect or store water which can be evenly distributed between locations. Dams generally serve the primary purpose of retaining water, while other structures such as floodgates or levees are used to manage or prevent water flow into specific land regions.

<span class="mw-page-title-main">Arch bridge</span> Bridge with arch-shaped supports

An arch bridge is a bridge with abutments at each end shaped as a curved arch. Arch bridges work by transferring the weight of the bridge and its loads partially into a horizontal thrust restrained by the abutments at either side. A viaduct may be made from a series of arches, although other more economical structures are typically used today.

<span class="mw-page-title-main">Diversion dam</span>

A diversion dam is a dam that diverts all or a portion of the flow of a river from its natural course. Diversion dams do not generally impound water in a reservoir; instead, the water is diverted into an artificial water course or canal, which may be used for irrigation or return to the river after passing through hydroelectric generators, flow into a different river or be itself dammed forming an onground or groundwater reservoir or a storm drain.

<span class="mw-page-title-main">St. Francis Dam</span> Former dam in Los Angeles County, California, US

The St. Francis Dam was a concrete gravity dam located in San Francisquito Canyon in northern Los Angeles County, California that was built between 1924 and 1926 to serve the city of Los Angeles's growing water needs. It failed catastrophically in 1928 due to a defective soil foundation and design flaws, unleashing a flood that claimed the lives of at least 431 people. The collapse of the dam is considered to have been one of the worst American civil engineering disasters of the 20th century, and remains the 3rd-greatest loss of life in California's history, exceeded only by the 1906 San Francisco earthquake and fire and the Great Flood of 1862.

<span class="mw-page-title-main">Mountain Dell Dam</span> Dam in Northern Utah

The Mountain Dell Dam provides a water equalizing and storage reservoir for Salt Lake City, Utah located 10 miles (16 km) east of the city in northeastern Salt Lake County, near Interstate 80 in Parley's Canyon.

The Blue Mountains Dams are a series of six dams in the Blue Mountains which supply water to the Blue Mountains and Sydney, Australia. The Dams are managed by the WaterNSW. Water in this scheme may be supplemented from the Fish River Scheme.

<span class="mw-page-title-main">Contra Dam</span> Dam in Ticino, Switzerland

The Contra Dam, commonly known as the Verzasca Dam and the Locarno Dam, is an arch dam on the Verzasca River in the Val Verzasca of Ticino, Switzerland. The dam creates Lago di Vogorno 2 km (1.2 mi) upstream of Lake Maggiore and supports the 105 MW Verzasca hydroelectric power station. It was constructed between 1961 and 1965 and starting shortly after its reservoir was filled, a series of earthquakes related to its water load occurred until 1971. The dam is owned and operated by Verzasca SA and is the fourth tallest in Switzerland.

<span class="mw-page-title-main">Morrow Point Dam</span> Dam on the Gunnison River in Colorado

Morrow Point Dam is a 468-foot-tall (143 m) concrete double-arch dam on the Gunnison River located in Colorado, the first dam of its type built by the U.S. Bureau of Reclamation. Located in the upper Black Canyon of the Gunnison, it creates Morrow Point Reservoir, and is within the National Park Service-operated Curecanti National Recreation Area. The dam is between the Blue Mesa Dam (upstream) and the Crystal Dam (downstream). Morrow Point Dam and reservoir are part of the Bureau of Reclamation's Wayne N. Aspinall Unit of the Colorado River Storage Project, which retains the waters of the Colorado River and its tributaries for agricultural and municipal use in the American Southwest. The dam's primary purpose is hydroelectric power generation.

<span class="mw-page-title-main">Buttress dam</span>

A buttress dam or hollow dam is a dam with a solid, water-tight upstream side that is supported at intervals on the downstream side by a series of buttresses or supports. The dam wall may be straight or curved. Most buttress dams are made of reinforced concrete and are heavy, pushing the dam into the ground. Water pushes against the dam, but the buttresses are inflexible and prevent the dam from falling over.

<span class="mw-page-title-main">Buffalo Bill Dam</span> Dam in Wyoming

Buffalo Bill Dam is a concrete arch-gravity dam on the Shoshone River in the U.S. state of Wyoming. It is named after the famous Wild West figure William "Buffalo Bill" Cody, who founded the nearby town of Cody and owned much of the land now covered by the reservoir formed by its construction. The dam is part of the Shoshone Project, successor to several visionary schemes promoted by Cody to irrigate the Bighorn Basin and turn it from a semi-arid sagebrush-covered plain to productive agricultural land. Known at the time of its construction as Shoshone Dam, it was renamed in 1946 to honor Cody.

The Bakhtiari Dam is an arch dam currently under construction on the Bakhtiari River within the Zagros Mountains on the border of Lorestan and Khuzestan Provinces, Iran. At a planned height of 325 metres (1,066 ft), it will be the world's tallest dam once completed and withhold the second largest reservoir in Iran after the Karkheh reservoir. The main purpose of the dam is hydroelectric power production and it will support a 1,500 MW power station. By trapping sediment, the dam is also expected to extend the life of the Dez Dam 50 km (31 mi) downstream.

<span class="mw-page-title-main">Tsankov Kamak Hydro Power Plant</span> Dam in Tsankov Kamak downstream of Devin

The Tsankov Kamak Hydroelectric Power Plant, also Tsankov Kamak HPP, comprises an arch dam and hydroelectric power plant (HPP) on the territory of the village of Mihalkovo, southwestern Bulgaria. It is situated on the Vacha River in Smolyan Province, on the borders of Pazardzhik Province and Plovdiv Province, roughly 40 kilometres (25 mi) southwest of Plovdiv and downstream (north) of the town of Devin. It is a part of the Dospat–Vacha Hydropower Cascade (500.2 MW) development of the Vacha River involving five dams and seven power stations in the provinces of Smolyan, Plovdiv and Pazardzhik, 250 kilometres (160 mi) southeast of the capital Sofia. The other four dams are Dospat, Teshel, Vacha and Krichim.

<span class="mw-page-title-main">Daniel-Johnson dam</span> Dam in Quebec, Canada

The Daniel-Johnson dam, formerly known as Manic-5, is a multiple-arch buttress dam on the Manicouagan River that creates the annular Manicouagan Reservoir. The dam is composed of 14 buttresses and 13 arches and is 214 km (133 mi) north of Baie-Comeau in Quebec, Canada. The dam was constructed between 1959 and 1970 for the purpose of hydroelectric power production and supplies water to the Manic-5 and Manic-5-PA power houses with a combined capacity of 2,660 MW. The dam is 214 m (702 ft) tall, 1,314 m (4,311 ft) long and contains 2,200,000 m3 (2,900,000 cu yd) of concrete, making it the largest dam of its type in the world.

<span class="mw-page-title-main">Glanum Dam</span> Dam in Bouches-du-Rhône, France

The Glanum Dam, also known as the Vallon de Baume dam, was a Roman arch dam built to supply water to the Roman town of Glanum, the remains of which stand outside the town of Saint-Rémy-de-Provence in Southern France. It was situated south of Glanum, in a gorge that cut into the hills of the Alpilles in the Roman province of Gallia Narbonensis. Dating to the 1st century BC, it was the earliest known dam of its kind. The remains of the dam were destroyed during the construction of a modern replacement in 1891, which now facilitates the supply of water to Saint-Rémy-de-Provence in the Bouches-du-Rhône region of France.

The Dara Dam was a Roman arch dam at Dara in Mesopotamia, a rare pre-modern example of this dam type. The modern identification of its site is uncertain, but may rather point to a common gravity dam.

<span class="mw-page-title-main">Salmon Creek Dam</span> Lake in the state of Alaska, United States

The Salmon Creek Dam is a concrete arch dam on the Salmon Creek, 3 miles (5 km) northwest of Juneau, Alaska. Built in 1914, it is the world's first constant-angle arch variable radius dam. Since it was built, over 100 such dams have been constructed all over the world. The dam was designated as a National Historic Civil Engineering Landmark by the American Society of Civil Engineers in 2022.

<span class="mw-page-title-main">Pensacola Dam</span> Dam in Mayes County, Oklahoma

The Pensacola Dam, also known as the Grand River Dam, is a multiple-arch buttress dam located between the towns of Disney and Langley on the Grand River in Mayes County, Oklahoma. The dam is operated by the Grand River Dam Authority and creates Grand Lake o' the Cherokees. After decades of vision and planning, it was constructed between 1938 and 1940 for the purposes of hydroelectric power generation, flood control and recreation. It is Oklahoma's first hydroelectric power plant and is referred to as the longest multiple-arch dam in the world.

Changuinola I Dam, is located in district of Changuinola, in the Province of Bocas del Toro, in the western part of Panama. It is the largest roller-compacted concrete arch-gravity dam in the World.

<span class="mw-page-title-main">Aqua Anio Vetus</span>

The Aqua Anio Vetus was an ancient Roman aqueduct, and the second oldest after the Aqua Appia.

<span class="mw-page-title-main">Matahina Power Station</span> Dam in Bay of Plenty

The Matahina power station is a hydroelectric power facility in Bay of Plenty in New Zealand on the Rangitaiki River downstream of the Aniwhenua Power Station. The river was dammed to form Lake Matahina from which water is drawn and diverted through the power station before being discharged back into the river. The Matahina dam is the largest earth embankment dam in the North Island of New Zealand.

References

  1. 1 2 3 4 5 6 Design of Arch Dams - Design Manual for Concrete Arch Dams, Denver Colorado: Bureau of Reclamation, 1977
  2. "Arch Dam Forces". PBS . Archived from the original on 5 February 2007. Retrieved 5 February 2007.
  3. 1 2 Smith, Norman (1971), A History of Dams, London: Peter Davies, ISBN   0-432-15090-0
  4. 1 2 3 4 5 "Key Developments in the History of Arch Dams". Cracking Dams. SimScience. Archived from the original on July 28, 2012. Retrieved 20 September 2018. from archive.org
  5. Patrick JAMES, Hubert CHANSON. "Historical Development of Arch Dams. From Cut-Stone Arches to Modern Concrete Designs". Barrages.org. Retrieved 18 July 2010.
  6. Chaason, Hubert. "EXTREME RESERVOIR SEDIMENTATION IN AUSTRALIA: A REVIEW" (PDF). Resources Journal. p. 101. Retrieved 18 July 2010.
  7. Chen, Sheng-Hong (2015-06-09). Hydraulic Structures. Springer. ISBN   9783662473313.
  8. 1 2 " National Register of Historic Places. Pensacola Dam". Archived 2010-06-26 at the Wayback Machine Accessed January 3, 2016.
  9. "Arch Dam Design Concepts and Criteria". Durham University. Retrieved 18 July 2010.
  10. "The world's highest arch dam Jinping first production unit" (in Chinese). Economic Times Network. 2 September 2013. Archived from the original on 9 September 2013. Retrieved 9 September 2013.
  11. Guimont, Andréanne (3 August 2010). "Manic 5 : colossal témoin du génie québécois en hydroélectricité". suite101.fr. Archived from the original on 17 August 2010. Retrieved 30 September 2010.
  12. 1 2 3 Arch Dam Design - Engineering Manual EM 1110-2-2201, Washington DC: U.S.Army Corps of Engineers, 1994
  13. Herzog, Max A. M. (1999). Practical Dam Analysis. London: Thomas Telford Publishing. pp. 115, 119–126. ISBN   3-8041-2070-9.
  14. "Contraction Joints". Arch Dams. Durham University. Retrieved 18 July 2010.