Aspergillus ochraceus

Last updated

Contents

Aspergillus ochraceus
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Ascomycota
Class: Eurotiomycetes
Order: Eurotiales
Family: Aspergillaceae
Genus: Aspergillus
Species:
A. ochraceus
Binomial name
Aspergillus ochraceus
Wilhelm, 1877

Aspergillus ochraceus is a mold species in the genus Aspergillus known to produce the toxin ochratoxin A, one of the most abundant food-contaminating mycotoxins, and citrinin. It also produces the dihydroisocoumarin mellein. It is a filamentous fungus in nature and has characteristic biseriate conidiophores. [1] [2] Traditionally a soil fungus, has now began to adapt to varied ecological niches, like agricultural commodities, farmed animal and marine species. [3] [4] [5] [6] In humans and animals the consumption of this fungus produces chronic neurotoxic, immunosuppressive, genotoxic, carcinogenic and teratogenic effects. [7] Its airborne spores are one of the potential causes of asthma in children and lung diseases in humans. [8] [9] The pig and chicken populations in the farms are the most affected by this fungus and its mycotoxins. [10] [11] Certain fungicides like mancozeb, copper oxychloride, and sulfur have inhibitory effects on the growth of this fungus and its mycotoxin producing capacities. [12]

The genus Aspergillus was first described in 1729 by Pier Antonio Micheli. [4] Under this genus the species Aspergillus ochraceus was discovered by the German botanist and mycologist Karl Adolf Wilhelm in 1877. [13] After this discovery, some other species that looked similar to Aspergillus ochraceus were considered synonyms of this fungus. For example, Aspergillus alutaceus isolated by Berkeley in 1875, Sterigmatocystis helva isolated by Bainier in 1881, Aspergillus ochraceus var. microspora isolated by Traboschi in 1908, and Aspergillus Ochraceus- petali- formis isolated by Balista et Maia in 1957 are all considered synonyms of Aspergillus ochraceus. [13] In 1979 two new species under the Aspergillus ochraceus group were discovered. Aspergillus bridgeri was isolated from soils collected in southcentral Wyoming and Aspergillus campestris from northcentral North Dakota. [14]

Physiology

The colonies of Aspergillus ochraceus grow rapidly (45 to 55 mm in 7 days). The optimum temperature for their growth is 25 °C. In an agar plate the vegetative mycelium is mostly submerged in the agar, while the conidial heads are typically arranged in zones. The characteristic colour of the colony is yellow. [13] Some colonies of Aspergillus ochraceus form pinkish to purple, irregular, pebble-like sclerotia up to 1 mm in diameter. The reverse look on a petri dish is pale to brownish. [1]

To the naked eye, the conidiophores of Aspergillus ochraceus appear as a powdery mass. Microscopically, smooth or finely roughened phialides are arranged on the conidial heads in a biseriate fashion (i.e., phialides are attached to intermediate cells called metulae, which in turn are attached to the vesicle). The metulae all around the perimeter grows in a radial orientation. In culture the conidial heads at first appear globose, but with age, the conidial chains adhere and develop into two or three divergent columns. Vinaceous purple sclerotia may be present. [13] The characteristic colour of the conidiophores is chalky yellow to pale yellow-brown. The heights of the conidiophores are up to 1500 μm high. The appearances of these conidiophores are granular with pale yellow-brown walls that attach abruptly to a "globose to subglobose vesicle". The vesicles, which are globose with thin walls and a diameter of 35 × 50 μm, produce sterigmata over the entire surface in culture. The primary sterigmata measures 15–25 × 5–6 μm, while the secondaries are 7–11 × 2–3.3 μm. [13] The conidia are arranged in dry, upright chains, often massing into two or more short columns per head, in wet microscopic mounts hyaline. The diameter of the conidia are around 2.5–3.5 μm. [1]

Aspergillus ochraceus produces a mycotoxin named ochratoxin A (OTA). [12] Mellein and 4-hydroxymellein are other toxic metabolites produced by this fungus. [15] The alkaloid Circumdatin H was isolated from A. ochraceus. [16]

Ecology

The ecological roots of Aspergillus ochraceus lay in the soil. [3] This fungus was first isolated from varied soils. [3] Evolutionary development has now well adapted Aspergillus ochraceus to occupy a great variety of environmental niches. It has been isolated from the marine alga Sargassum miyabei . [6] This fungus has also been found in a wide variety of agricultural commodities like corn, peanuts, cottonseed, rice, tree nuts, cereal grains, and fruits. [4] Similarly the presence of this fungus has been documented in coffee beans [17] Apart from the actual colonies of fungi growing on substances, the toxins and metabolites produced by this fungus have also been found in a variety of places. For example, the mycotoxin OTA produced by this fungus was found to be present in airborne dust. [18] Likewise, secondary metabolites of this fungus have been isolated from marine sponges. [19] This fungus has also been found to be associated with the contamination of an edible caterpillar, named the phane worm. [20] In terms of climate preferences, this fungus has been found to mainly colonise temperate and tropical geographical areas. [21]

Mycotoxin of importance in agriculture and farming

Ochratoxin A (OTA), a mycotoxin produced by A. ochraceus, contaminates food and initiates apoptosis of plant cells. [22] Significant loss in nutritive value and hazardous effect on the food chain are caused due to the same OTA toxin contamination in barley grains of Spain. [23] OTA has been isolated from plant acquired foods products like cereal, vegetables, coffee, wine, liquorice and also animal acquired food products like pork and poultry. [5] Apart from being found in human food products from farm animals, this fungus was also isolated from the poultry feed. [24] Aspergillus ochraceus produces both OTA and Penicillic acid in poultry feed at optimum temperatures and moisture levels. [24] Combinations of low temperature and moisture favored the growth of Penicillic acid, on the other hand combinations of high temperature and moisture favored the growth of OTA. [24] In addition to poultry and agricultural products the harvesting of edible insects is also an important economic activity. [20] The rural population of Botswana eat a caterpillar called 'phane worm'. As already mentioned above, this lepidopteran larva is often contaminated by A. ochraceus. [20] So this fungus is also of economic importance in cultures that consume insects. Wineries are also subject to losses resulting from OTA contamination as a result of A. ochraceus grows on grapes, dried vine fruits and wine. [25]

Industrial use

Aspergillus ochraceus was used for the industrial production of xylanase and β-xylosidase. [26] In addition to producing enzymes, recently in a study done by Lee Ki in 2013, Aspergillus ochraceus was found to inhibit the growth of a Shiga toxin-producing bacteria called Escherichia coli (STEC) O157, implicating industrial use of this phenomenon to develop anti-bacterial drugs. [27] In another study pertaining to the conversion of Xanthohumol, a prenylated chalconoid, which has antioxidant and anticancer properties, Aspergillus ochraceus was found to be able to convert it into a stronger antioxidant, increasing the compounds radical scavenging properties. [28] The process of fermentation was found to be enhanced by the addition of Aspergillus ochraceus in the substrate mixture, which contained wheat bran and wheat straw liquor. [29] The secondary metabolites of this fungus have shown to possess antibacterial activities that manifest the potential to inhibit human pathogens. [19] For example, α- Campholene aldehyde, Lucenin-2 and 6-Ethyloct- 3-yl- 2- ethylhexyl ester are the three secondary metabolites that showed antimicrobial effects against potential human pathogens. [19]

Effects of human consumption

The consumption of OTA is found to have neurotoxic, immunosuppressive, genotoxic, carcinogenic and teratogenic effects in humans. [7] Toxicological studies have shown OTA to have strong carcinogenic mycotoxin effects on the liver and kidney of humans. [30] Renal failure in human subjects have been reported after the inhalation of OTA. [31] In addition to organ damage after inhalation of OTA, cases of allergy development have also been found. A disease named allergic bronchopulmonary aspergillosis, has been found to be caused due to the antigenic effects of Aspergillus ochraceus. [32] Aspergillus ochraceus was found to be associated with the development of asthma in children too. [8] Cases of occupational environmental hazards are also documented, due to the presence of this fungus in organic dust of poultry industry. [9] The workers in the poultry farm, subjected to this contaminated organic dust suffer from lung inflammation and decreased pulmonary function. [9] In addition to lung diseases, instances of Aspergillus ochraceus causing paranasal sinusitis have also been reported. [1]

Animal diseases

A 4-year-old male mixed breed dog was diagnosed with ear discharge due to A. ochraceus otitis. [2] But the dog was treated with oral itraconazole and topical miconazole, which cured the dog after three weeks of medication. In a study, to test the toxicity of OTA in rats, a different dietary dose of OTA was administered to male Fischer rats. [33] Only chronic administration of OTA manifested as renal carcinogenesis in these rats. [33] Low levels of Aspergillus ochraceus contamination caused mycotoxic nephropathy in farm pigs and chickens from Bulgaria. [10] Just as in Bulgaria, the mycotoxicoses produced by A. ochraceus is seen in chickens and other animals elsewhere. In this mycotoxicoses we see suppression of hemopoiesis, acute nephrosis, hepatic necrosis and enteritis. [34] The mechanisms by which this fungus causes the nephrotoxicity in animals are cell apoptosis and lipid peroxidation. [35] In the pig population this fungus has caused a number of diseases. Some of these diseased conditions are, subcutaneous edema, hydrothorax, hydroperitoneum, pulmonary atelectasis, edema of the mesentery and perirenal edema. [11] The edema produced in these animals is so massive that ascites, hydrothorax, and hydropericardium develop, in addition to subcutaneous edema and mesenteric edema. [34] Affected animals die within a few hours generally. In addition to these conditions, renal lesions have been reported, which consist of tubular degeneration, necrosis, hyaline tubular casts, interstitial fibrosis and tubular cell regeneration. [11] Extensive interstitial fibrosis of the cortical labyrinth was another observation in the swine population. [11] Bovine abortions have also been associated with A. ochraceus infection. [1]

Treatment and prevention

Fungicides like mancozeb, copper oxychloride, and sulfur inhibit Aspergillus ochraceus growth at appropriate doses, temperature and time. [12] These fungicides also decrease the capacity of this fungus to produce the mycotoxin OTA. [12] Ozonated air can be used to prevent the growth of this fungus on foods products like sausages. [36] In another study they found that, gamma irradiations are useful in the detoxification and inactivation of ochratoxin A (OTA). [37] The ethonolic extracts from the bark of the tree Clausena heptaphylla, has shown to inhibit the growth of this fungus as well. [38] Fatty acids methyl esters (FAMEs), extracted from Linum usitatissimum seeds, have been found to reduce the radial hyphal growth of Aspergillus ochraceus, even though slightly less than "Aspergillus flavus". [39] In a very similar fashion, some essential oils extracted from aromatic plants, have shown to have fungicidal effects on Aspergillus ochraceus that colonized pulses. [40] In animals too, attempts have been made to cure (OTA) toxicosis. For example, in the White Leghorn cockerel, chronic haematological damage caused by (OTA) exposure can be reduced by exogenous supplementation using a combination of L-carnitine and vitamin E. [41] Recently an alcohol producing yeast strain, Saccharomyces cerevisiae was found to inhibit the growth of OTA. Transcriptional regulation of OTA biosynthetic gene was the inhibitory mechanism used by the bacteria to do so. [42] Dietary exposure to OTA today is mainly a result of failures during processing and conservation procedures used by food industries. Improper agricultural technology, storage and transport practices as well as method of processing food are key checkpoints to avoid toxic consumption of OTA. [7]

Related Research Articles

<span class="mw-page-title-main">Aflatoxin</span> Group of poisons produced by moulds

Aflatoxins are various poisonous carcinogens and mutagens that are produced by certain molds, particularly Aspergillus species mainly by Aspergillus flavus and Aspergillus parasiticus. According to the USDA, "They are probably the best known and most intensively researched mycotoxins in the world." The fungi grow in soil, decaying vegetation and various staple foodstuffs and commodities such as hay, maize, peanuts, coffee, wheat, millet, sorghum, cassava, rice, chili peppers, cottonseed, tree nuts, sesame seeds, sunflower seeds, and various cereal grains and oil seeds. In short, the relevant fungi grow on almost any crop or food. When such contaminated food is processed or consumed, the aflatoxins enter the general food supply. They have been found in both pet and human foods, as well as in feedstocks for agricultural animals. Animals fed contaminated food can pass aflatoxin transformation products into milk, milk products, and meat. For example, contaminated poultry feed is the suspected source of aflatoxin-contaminated chicken meat and eggs in Pakistan.

<i>Aspergillus niger</i> Species of fungus

Aspergillus niger is a mold classified within the Nigri section of the Aspergillus genus. The Aspergillus genus consists of common molds found throughout the environment within soil and water, on vegetation, in fecal matter, on decomposing matter, and suspended in the air. Species within this genus often grow quickly and can sporulate within a few days of germination. A combination of characteristics unique to A. niger makes the microbe invaluable to the production of many acids, proteins and bioactive compounds. Characteristics including extensive metabolic diversity, high production yield, secretion capability, and the ability to conduct post-translational modifications are responsible for A. niger's robust production of secondary metabolites. A. niger's capability to withstand extremely acidic conditions makes it especially important to the industrial production of citric acid.

A mycotoxin is a toxic secondary metabolite produced by fungi and is capable of causing disease and death in both humans and other animals. The term 'mycotoxin' is usually reserved for the toxic chemical products produced by fungi that readily colonize crops.

<i>Penicillium roqueforti</i> Species of fungus

Penicillium roqueforti is a common saprotrophic fungus in the genus Penicillium. Widespread in nature, it can be isolated from soil, decaying organic matter, and plants.

<span class="mw-page-title-main">Ochratoxin A</span> Chemical compound

Ochratoxin A—a toxin produced by different Aspergillus and Penicillium species — is one of the most-abundant food-contaminating mycotoxins. It is also a frequent contaminant of water-damaged houses and of heating ducts. Human exposure can occur through consumption of contaminated food products, particularly contaminated grain and pork products, as well as coffee, wine grapes, and dried grapes. The toxin has been found in the tissues and organs of animals, including human blood and breast milk. Ochratoxin A, like most toxic substances, has large species- and sex-specific toxicological differences.

Mycotoxicology is the branch of mycology that focuses on analyzing and studying the toxins produced by fungi, known as mycotoxins. In the food industry it is important to adopt measures that keep mycotoxin levels as low as practicable, especially those that are heat-stable. These chemical compounds are the result of secondary metabolism initiated in response to specific developmental or environmental signals. This includes biological stress from the environment, such as lower nutrients or competition for those available. Under this secondary path the fungus produces a wide array of compounds in order to gain some level of advantage, such as incrementing the efficiency of metabolic processes to gain more energy from less food, or attacking other microorganisms and being able to use their remains as a food source.

<i>Aspergillus terreus</i> Species of fungus

Aspergillus terreus, also known as Aspergillus terrestris, is a fungus (mold) found worldwide in soil. Although thought to be strictly asexual until recently, A. terreus is now known to be capable of sexual reproduction. This saprotrophic fungus is prevalent in warmer climates such as tropical and subtropical regions. Aside from being located in soil, A. terreus has also been found in habitats such as decomposing vegetation and dust. A. terreus is commonly used in industry to produce important organic acids, such as itaconic acid and cis-aconitic acid, as well as enzymes, like xylanase. It was also the initial source for the drug mevinolin (lovastatin), a drug for lowering serum cholesterol.

Microbial toxins are toxins produced by micro-organisms, including bacteria, fungi, protozoa, dinoflagellates, and viruses. Many microbial toxins promote infection and disease by directly damaging host tissues and by disabling the immune system. Endotoxins most commonly refer to the lipopolysaccharide (LPS) or lipooligosaccharide (LOS) that are in the outer plasma membrane of Gram-negative bacteria. The botulinum toxin, which is primarily produced by Clostridium botulinum and less frequently by other Clostridium species, is the most toxic substance known in the world. However, microbial toxins also have important uses in medical science and research. Currently, new methods of detecting bacterial toxins are being developed to better isolate and understand these toxins. Potential applications of toxin research include combating microbial virulence, the development of novel anticancer drugs and other medicines, and the use of toxins as tools in neurobiology and cellular biology.

<i>Aspergillus versicolor</i> Species of fungus

Aspergillus versicolor is a slow-growing species of filamentous fungus commonly found in damp indoor environments and on food products. It has a characteristic musty odor associated with moldy homes and is a major producer of the hepatotoxic and carcinogenic mycotoxin sterigmatocystin. Like other Aspergillus species, A. versicolor is an eye, nose, and throat irritant.

<i>Aspergillus ustus</i> Species of fungus

Aspergillus ustus is a microfungus and member of the division Ascomycota. It is commonly found in indoor environments and soil. Isolated cases of human infection resulting from A. ustus have been described; however the majority of these are nail infections.

Penicillium nordicum is an anamorph species of fungus in the genus Penicillium which produces ochratoxin A. Penicillium nordicum contaminates protein rich foods and foods with high NaCl-konzentration. It is mostly found on dry-cured meat products and cheese products

<i>Penicillium digitatum</i> Species of fungus

Penicillium digitatum is a mesophilic fungus found in the soil of citrus-producing areas. It is a major source of post-harvest decay in fruits and is responsible for the widespread post-harvest disease in Citrus fruit known as green rot or green mould. In nature, this necrotrophic wound pathogen grows in filaments and reproduces asexually through the production of conidiophores and conidia. However, P. digitatum can also be cultivated in the laboratory setting. Alongside its pathogenic life cycle, P. digitatum is also involved in other human, animal and plant interactions and is currently being used in the production of immunologically based mycological detection assays for the food industry.

Aspergillus unguis is a species of fungus in the genus Aspergillus, and the asexual state (anamorph) of Emericella unguis. Aspergillus unguis is a filamentous soil-borne fungus found on decomposing plant matter and other moist substrates including with building materials and household dust. Aspergillus unguis occurs mainly in tropical and subtropical soils but has also been isolated from various marine and aquatic habitats. The species was first isolated in 1935 by Weill and L. Gaudin. Historically, A. unguis was assigned to the A. nidulans group, a common group of soil-borne fungi due to the resemblance of its ascospores and cleistothecia to those of Emericella nidulans. Aspergillus unguis is distinctive, however, in possessing spicular hyphae. A number of synonyms have been collapsed into this species, including Sterigmatocystis unguis, Aspergillus laokiashanensis and Aspergillus mellinus.

<i>Trichothecium roseum</i> Species of fungus

Trichothecium roseum is a fungus in the division Ascomycota first reported in 1809. It is characterized by its flat and granular colonies which are initially white and develop to be light pink in color. This fungus reproduces asexually through the formation of conidia with no known sexual state. Trichothecium roseum is distinctive from other species of the genus Trichothecium in its characteristic zigzag patterned chained conidia. It is found in various countries worldwide and can grow in a variety of habitats ranging from leaf litter to fruit crops. Trichothecium roseum produces a wide variety of secondary metabolites including mycotoxins, such as roseotoxins and trichothecenes, which can infect and spoil a variety of fruit crops. It can act as both a secondary and opportunistic pathogen by causing pink rot on various fruits and vegetables and thus has an economical impact on the farming industry. Secondary metabolites of T. roseum, specifically Trichothecinol A, are being investigated as potential anti-metastatic drugs. Several agents including harpin, silicon oxide, and sodium silicate are potential inhibitors of T. roseum growth on fruit crops. Trichothecium roseum is mainly a plant pathogen and has yet to show a significant impact on human health.

Penicillium verrucosum is a psychrophilic fungus which was discovered in Belgium and introduced by Dierckx in 1901. Six varieties of this species have been recognized based primarily on differences in colony colour: P. verrucosum var. album, P. verrucosum var. corymbiferum, P. verrucosum var. cyclopium, P. verrucosum var. ochraceum, P. verrucosum var. melanochlorum and P. verrucosum var. verrucosum. This fungus has important implications in food, specifically for grains and other cereal crops on which it grows. Its growth is carefully regulated in order to reduce food spoilage by this fungi and its toxic products. The genome of P. verrucosum has been sequenced and the gene clusters for the biosyntheses of its mycotoxins have been identified.

<i>Aspergillus clavatus</i> Species of fungus

Aspergillus clavatus is a species of fungus in the genus Aspergillus with conidia dimensions 3–4.5 x 2.5–4.5 μm. It is found in soil and animal manure. The fungus was first described scientifically in 1834 by the French mycologist John Baptiste Henri Joseph Desmazières.

<i>Aspergillus tubingensis</i> Species of fungus

Aspergillus tubingensis is a darkly pigmented species of fungus in the genus Aspergillus section Nigri. It is often confused with Aspergillus niger due to their similar morphology and habitat. A. tubingensis is often involved in food spoilage of fruits and wheat, and industrial fermentation. This species is a rare agent of opportunistic infection.

<i>Aspergillus parasiticus</i> Species of fungus

Aspergillus parasiticus is a fungus belonging to the genus Aspergillus. This species is an unspecialized saprophytic mold, mostly found outdoors in areas of rich soil with decaying plant material as well as in dry grain storage facilities. Often confused with the closely related species, A. flavus, A. parasiticus has defined morphological and molecular differences. Aspergillus parasiticus is one of three fungi able to produce the mycotoxin, aflatoxin, one of the most carcinogenic naturally occurring substances. Environmental stress can upregulate aflatoxin production by the fungus, which can occur when the fungus is growing on plants that become damaged due to exposure to poor weather conditions, during drought, by insects, or by birds. In humans, exposure to A. parasiticus toxins can cause delayed development in children and produce serious liver diseases and/or hepatic carcinoma in adults. The fungus can also cause the infection known as aspergillosis in humans and other animals. A. parasiticus is of agricultural importance due to its ability to cause disease in corn, peanut, and cottonseed.

Aspergillus wentii is an asexual, filamentous, endosymbiotic fungus belonging to the mold genus, Aspergillus. It is a common soil fungus with a cosmopolitan distribution, although it is primarily found in subtropical regions. Found on a variety of organic materials, A. wentii is known to colonize corn, cereals, moist grains, peanuts and other ground nut crops. It is also used in the manufacture of biodiesel from lipids and is known for its ability to produce enzymes used in the food industry.

Aspergillus giganteus is a species of fungus in the genus Aspergillus that grows as a mold. It was first described in 1901 by Wehmer, and is one of six Aspergillus species from the Clavati section of the subgenus Fumigati. Its closest taxonomic relatives are Aspergillus rhizopodus and Aspergillus longivescia.

References

  1. 1 2 3 4 5 Bennet, J.W. Mycology Series. New Orleans, Louisiana: Tulane University. pp. 294–295.
  2. 1 2 Ghibaudo, G; Peano, A (October 2010). "Chronic monolateral otomycosis in a dog caused by Aspergillus ochraceus". Veterinary Dermatology. 21 (5): 522–6. doi:10.1111/j.1365-3164.2010.00884.x. PMID   20409075.
  3. 1 2 3 Anderson, K.H. Domsch ; W. Gams ; Traute-Heidi (1993). Compendium of soil fungi (Reprint [der Ausg. London] 1980. ed.). Eching: IHW-Verl. ISBN   978-3980308380.{{cite book}}: CS1 maint: multiple names: authors list (link)
  4. 1 2 3 Wilson, DM; Mubatanhema, W; Jurjevic, Z (2002). "Biology and Ecology of Mycotoxigenic Aspergillus Species as Related to Economic and Health Concerns". Mycotoxins and Food Safety. Advances in Experimental Medicine and Biology. Vol. 504. pp. 3–17. doi:10.1007/978-1-4615-0629-4_2. ISBN   978-1-4613-5166-5. PMID   11922097.
  5. 1 2 Ostry, V; Malir, F; Ruprich, J (17 September 2013). "Producers and important dietary sources of ochratoxin A and citrinin". Toxins. 5 (9): 1574–86. doi: 10.3390/toxins5091574 . PMC   3798874 . PMID   24048364.
  6. 1 2 Cui, CM; Li, XM; Meng, L; Li, CS; Huang, CG; Wang, BG (29 November 2010). "7-Nor-ergosterolide, a pentalactone-containing norsteroid and related steroids from the marine-derived endophytic Aspergillus ochraceus EN-31". Journal of Natural Products. 73 (11): 1780–4. doi:10.1021/np100386q. PMID   21043476.
  7. 1 2 3 Ravelo Abreu, A; Rubio Armendáriz, C; Gutiérrez Fernández, AJ; Hardisson de la Torre, A (November–December 2011). "La ocratoxina A en alimentos de consumo humano: revisión" [Ochratoxin A in foods for human consumption: review]. Nutricion Hospitalaria (in Spanish). 26 (6): 1215–26. doi:10.3305/nh.2011.26.6.5381. PMID   22411363.
  8. 1 2 Reponen T, Lockey J, Bernstein DI, Vesper SJ, Levin L, Khurana Hershey GK, Zheng S, Ryan P, Grinshpun SA, Villareal M, Lemasters G (September 2012). "Infant origins of childhood asthma associated with specific molds". The Journal of Allergy and Clinical Immunology. 130 (3): 639–644.e5. doi:10.1016/j.jaci.2012.05.030. PMC   3432137 . PMID   22789397.
  9. 1 2 3 Nonnenmann, MW; Bextine, B; Dowd, SE; Gilmore, K; Levin, JL (December 2010). "Culture-independent characterization of bacteria and fungi in a poultry bioaerosol using pyrosequencing: a new approach". Journal of Occupational and Environmental Hygiene. 7 (12): 693–9. doi:10.1080/15459624.2010.526893. PMID   21058154. S2CID   9016397.
  10. 1 2 Stoev, SD; Dutton, MF; Njobeh, PB; Mosonik, JS; Steenkamp, PA (January 2010). "Mycotoxic nephropathy in Bulgarian pigs and chickens: complex aetiology and similarity to Balkan endemic nephropathy" (PDF). Food Additives & Contaminants: Part A. 27 (1): 72–88. doi:10.1080/02652030903207227. PMID   19753495. S2CID   26008419.
  11. 1 2 3 4 Zimmermann, JL; Carlton, WW; Tuite, J (September 1979). "Mycotoxicosis produced in swine by cultural products of an isolate of Aspergillus ochraceus. I. Clinical observations and pathology". Veterinary Pathology. 16 (5): 583–92. doi:10.1177/030098587901600511. PMID   473489. S2CID   46637110.
  12. 1 2 3 4 Mateo, EM; Valle-Algarra, FM; Mateo-Castro, R; Jimenez, M (January 2011). "Impact of non-selective fungicides on the growth and production of ochratoxin A by Aspergillus ochraceus and A. carbonarius in barley-based medium" (PDF). Food Additives & Contaminants: Part A. 28 (1): 86–97. doi:10.1080/19440049.2010.529621. PMID   21128138. S2CID   21779143.
  13. 1 2 3 4 5 Kwon-Chung, K.J.; Bennett, John E. (1992). Medical mycology. Philadelphia: Lea & Febiger. ISBN   978-0812114638.
  14. Christensen, Martha (1982). "The Aspergillus ochraceus Group: Two New Species from Western Soils and a Synoptic Key". Mycologia. 74 (2): 210–225. doi:10.1080/00275514.1982.12021493. JSTOR   3792887.
  15. Moore, JH; Davis, ND; Diener, UL (June 1972). "Mellein and 4-hydroxymellein production by Aspergillus ochraceus Wilhelm". Applied Microbiology. 23 (6): 1067–72. doi:10.1128/AEM.23.6.1067-1072.1972. PMC   380508 . PMID   5064985.
  16. López-Gresa, M Pilar; González, M Carmen; Primo, Jaime; Moya, Pilar; Romero, Vanessa; Estornell, Ernesto (1 June 2005). "Circumdatin H, a New Inhibitor of Mitochondrial NADH Oxidase, from Aspergillus ochraceus". The Journal of Antibiotics. 58 (6): 416–419. doi: 10.1038/ja.2005.54 . PMID   16156520.
  17. Moslem, MA; Mashraqi, A; Abd-Elsalam, KA; Bahkali, AH; Elnagaer, MA (23 November 2010). "Molecular detection of ochratoxigenic Aspergillus species isolated from coffee beans in Saudi Arabia". Genetics and Molecular Research. 9 (4): 2292–9. doi: 10.4238/vol9-4gmr943 . PMID   21128209.
  18. Skaug, MA; Eduard, W; Størmer, FC (2001). "Ochratoxin A in airborne dust and fungal conidia". Mycopathologia. 151 (2): 93–8. doi:10.1023/A:1010953401173. PMID   11554583. S2CID   25267465.
  19. 1 2 3 Meenupriya, J; Thangaraj, M (October 2011). "Analytical characterization and structure elucidation of metabolites from Aspergillus ochraceus MP2 fungi". Asian Pacific Journal of Tropical Biomedicine. 1 (5): 376–80. doi:10.1016/S2221-1691(11)60083-X. PMC   3614191 . PMID   23569796.
  20. 1 2 3 Simpanya, MF; Allotey, J; Mpuchane, SF (January 2000). "A mycological investigation of phane, an edible caterpillar of an emperor moth, Imbrasia belina". Journal of Food Protection. 63 (1): 137–40. doi: 10.4315/0362-028X-63.1.137 . PMID   10643785.
  21. Magan, N; Aldred, D (20 October 2007). "Post-harvest control strategies: minimizing mycotoxins in the food chain". International Journal of Food Microbiology. 119 (1–2): 131–9. doi:10.1016/j.ijfoodmicro.2007.07.034. hdl: 1826/2390 . PMID   17764773.
  22. Wang, Y; Hao, J; Zhao, W; Yang, Z; Wu, W; Zhang, Y; Xu, W; Luo, Y; Huang, K (July 2013). "Comparative proteomics and physiological characterization of Arabidopsis thaliana seedlings in responses to Ochratoxin A". Plant Molecular Biology. 82 (4–5): 321–37. doi:10.1007/s11103-013-0064-x. PMID   23625346. S2CID   15390503.
  23. Mateo, EM; Gil-Serna, J; Patiño, B; Jiménez, M (15 September 2011). "Aflatoxins and ochratoxin A in stored barley grain in Spain and impact of PCR-based strategies to assess the occurrence of aflatoxigenic and ochratoxigenic Aspergillus spp". International Journal of Food Microbiology. 149 (2): 118–26. doi:10.1016/j.ijfoodmicro.2011.06.006. PMID   21741104.
  24. 1 2 3 Bacon, CW; Sweeney, JG; Robbins, JD; Burdick, D (August 1973). "Production of penicillic acid and ochratoxin A on poultry feed by Aspergillus ochraceus: temperature and moisture requirements". Applied Microbiology. 26 (2): 155–60. doi:10.1128/AEM.26.2.155-160.1973. PMC   379743 . PMID   4795527.
  25. "Fungi producing significant mycotoxins". IARC Scientific Publications (158): 1–30. 2012. PMID   23477193.
  26. Michelin, M; Polizeli Mde, L; Ruzene, DS; Silva, DP; Ruiz, HA; Vicente, AA; Jorge, JA; Terenzi, HF; Teixeira, JA (September 2012). "Production of xylanase and β-xylosidase from autohydrolysis liquor of corncob using two fungal strains". Bioprocess and Biosystems Engineering. 35 (7): 1185–92. doi:10.1007/s00449-012-0705-5. hdl: 1822/22436 . PMID   22367528. S2CID   206991997.
  27. Lee, KI; Kobayashi, N; Watanabe, M; Sugita-Konishi, Y; Tsubone, H; Kumagai, S; Hara-Kudo, Y (6 August 2013). "Spread and change in stress resistance of Shiga toxin-producing Escherichia coli O157 on fungal colonies". Microbial Biotechnology. 7 (6): 621–9. doi:10.1111/1751-7915.12071. PMC   4265080 . PMID   23919289.
  28. Tronina, T; Bartmańska, A; Popłoński, J; Huszcza, E (5 March 2013). "Transformation of xanthohumol by Aspergillus ochraceus". Journal of Basic Microbiology. 54 (1): 66–71. doi:10.1002/jobm.201200320. PMID   23463662. S2CID   35876671.
  29. Michelin, M; Polizeli Mde, L; Ruzene, DS; Silva, DP; Vicente, AA; Jorge, JA; Terenzi, HF; Teixeira, JA (January 2012). "Xylanase and β-xylosidase production by Aspergillus ochraceus: new perspectives for the application of wheat straw autohydrolysis liquor". Applied Biochemistry and Biotechnology. 166 (2): 336–47. doi:10.1007/s12010-011-9428-3. hdl: 1822/22480 . PMID   22072141. S2CID   1271612.
  30. Li, F; Ji, R (March 2003). "[Ochratoxin A and human health]". Wei Sheng Yan Jiu = Journal of Hygiene Research. 32 (2): 172–5. PMID   12793017.
  31. Di Paolo, N; Guarnieri, A; Garosi, G; Sacchi, G; Mangiarotti, AM; Di Paolo, M (1994). "Inhaled mycotoxins lead to acute renal failure". Nephrology, Dialysis, Transplantation. 9 (Suppl 4): 116–20. PMID   7800243.
  32. Novey, HS; Wells, ID (November 1978). "Allergic bronchopulmonary aspergillosis caused by Aspergillus ochraceus". American Journal of Clinical Pathology. 70 (5): 840–3. doi:10.1093/ajcp/70.5.840. PMID   102184.
  33. 1 2 Mantle, P; Kulinskaya, E (November 2010). "Lifetime, low-dose ochratoxin A dietary study on renal carcinogenesis in male Fischer rats". Food Additives & Contaminants: Part A. 27 (11): 1566–73. doi:10.1080/19440049.2010.502302. PMID   20694869. S2CID   205948591.
  34. 1 2 Rippon, John Willard (1982). Medical mycology : the pathogenic fungi and the pathogenic actinomycetes (2nd ed.). Philadelphia: Saunders. ISBN   978-0721675862.
  35. Kumar M, Dwivedi P, Sharma AK, Sankar M, Patil RD, Singh ND (2014). "Apoptosis and lipid peroxidation in ochratoxin A- and citrinin-induced nephrotoxicity in rabbits". Toxicol Ind Health. 30 (1): 90–8. doi:10.1177/0748233712452598. PMID   22773436. S2CID   34544171.
  36. Iacumin, L; Manzano, M; Comi, G (April 2012). "Prevention of Aspergillus ochraceus growth on and Ochratoxin a contamination of sausages using ozonated air". Food Microbiology. 29 (2): 229–32. doi:10.1016/j.fm.2011.06.018. PMID   22202877.
  37. Kumar, S; Kunwar, A; Gautam, S; Sharma, A (February 2012). "Inactivation of A. ochraceus spores and detoxification of ochratoxin A in coffee beans by gamma irradiation". Journal of Food Science. 77 (2): T44–51. doi: 10.1111/j.1750-3841.2011.02572.x . PMID   22339551.
  38. Fakruddin, M; Mannan, KS; Mazumdar, RM; Afroz, H (27 November 2012). "Antibacterial, antifungal and antioxidant activities of the ethanol extract of the stem bark of Clausena heptaphylla". BMC Complementary and Alternative Medicine. 12: 232. doi: 10.1186/1472-6882-12-232 . PMC   3533896 . PMID   23181593.
  39. Abdelillah, A; Houcine, B; Halima, D; Meriem, CS; Imane, Z; Eddine, SD; Abdallah, M; Daoudi, CS; Eddine, AD (June 2013). "Evaluation of antifungal activity of free fatty acids methyl esters fraction isolated from Algerian Linum usitatissimum L. seeds against toxigenic Aspergillus". Asian Pacific Journal of Tropical Biomedicine. 3 (6): 443–8. doi:10.1016/S2221-1691(13)60094-5. PMC   3644571 . PMID   23730556.
  40. Pandey, Abhay K.; Singh, Pooja; Palni, Uma T.; Tripathi, N.N. (1 September 2013). "Application of Linn. essential oil as botanical fungicide for the management of fungal deterioration in pulses". Biological Agriculture & Horticulture. 29 (3): 197–208. doi:10.1080/01448765.2013.822828. S2CID   86750151.
  41. Abidin, Z.; Khan, M.Z.; Khatoon, A.; Saleemi, M.K.; Khan, A.; Javed, I. (1 August 2013). "Ameliorative effects of L-carnitine and vitamin E (α-tocopherol) on haematological and serum biochemical parameters in White Leghorn cockerels given ochratoxin A contaminated feed". British Poultry Science. 54 (4): 471–477. doi:10.1080/00071668.2013.796509. PMID   23829581. S2CID   25085318.
  42. Cubaiu, L; Abbas, H; Dobson, AD; Budroni, M; Migheli, Q (10 December 2012). "A Saccharomyces cerevisiae wine strain inhibits growth and decreases Ochratoxin A biosynthesis by Aspergillus carbonarius and Aspergillus ochraceus". Toxins. 4 (12): 1468–81. doi: 10.3390/toxins4121468 . PMC   3528257 . PMID   23223175.