Aureobasidium pullulans

Last updated

Aureobasidium pullulans
Aureobasidium pullulans 44026.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Ascomycota
Class: Dothideomycetes
Order: Dothideales
Family: Dothioraceae
Genus: Aureobasidium
Species:
A. pullulans
Binomial name
Aureobasidium pullulans
(de Bary) G. Arnaud (1918)
Synonyms

Aureobasidium oleae
Aureobasidium pullulans
Azymocandida malicola
Candida malicola
Cladosporium pullulans
Dematium pullulans
Exobasidium vitis
Hormonema oleae
Hormonema pullulans
Pullularia fermentans
Pullularia fermentans var. schoenii
Pullularia pullulans
Torula oleae
Torula schoenii

Contents

Aureobasidium pullulans is a ubiquitous and generalistic black, yeast-like fungus that can be found in different environments (e.g. soil, water, air and limestone). It is well known as a naturally occurring epiphyte or endophyte of a wide range of plant species (e.g. apple, grape, cucumber, green beans, cabbage) without causing any symptoms of disease. [1] A. pullulans has a high importance in biotechnology for the production of different enzymes, siderophores and pullulan. [2] Furthermore, A. pullulans is used in biological control of plant diseases, especially storage diseases. [3] [4]

Chronic human exposure to A. pullulans via humidifiers or air conditioners can lead to hypersensitivity pneumonitis (extrinsic allergic alveolitis) or "humidifier lung". This condition is characterized acutely by dyspnea, cough, fever, chest infiltrates, and acute inflammatory reaction. The condition can also be chronic, and lymphocyte-mediated. The chronic condition is characterized radiographically by reticulonodular infiltrates in the lung, with apical sparing. The strains causing infections in humans were reclassified to A. melanogenum . [5]

A. pullulans can be cultivated on potato dextrose agar, where it produces smooth, faint pink, yeast-like colonies covered with a slimy mass of spores. Older colonies change to black due to chlamydospore production. Primary conidia are hyaline, smooth, ellipsoidal, one-celled, and variable in shape and size; secondary conidia are smaller. Conidiophores are undifferentiated, intercalary or terminal, or arising as short lateral branches. Endoconidia are produced in an intercalary cell and released into a neighboring empty cell. Hyphae are hyaline, smooth, and thinwalled, with transverse septa. The fungus grows at 10–35 °C with optimum growth at 30 °C.[ citation needed ]

A. pullulans is notable for its phenotypic plasticity. Colony morphology may be affected by carbon source, colony age, temperature, light and substrate, with colonies ranging from homogeneous to sectored, yeast-like to filamentous growth, and from small to large. [6] These changes, potentially influenced by epigenetic factors, and the particular developmental sequences that the colonies proceed through may be observed with the naked eye. [6] Besides these morphological plasticity A. pullulans is also adaptable to various stressful conditions: hypersaline, acidic and alkaline, cold, and oligotrophic. Therefore, it is considered to be polyextremotolerant. [7]

The morphology-based taxonomy of the species is complicated by the large morphological variability between strains and even within a single strain. Based on molecular analyses, four varieties of the species A. pullulans were recognised: var. pullulans from substrates with low water activity and the phyllosphere and a variety of other habitats; var. melanogenum from aquatic habitats; var. subglaciale from glacial habitats; and var. namibiae, which was described on the basis of only one strain isolated from dolomitic marble in Namibia. [8] However, when the genome sequences of these varieties became available, the differences between them were considered as too large to be accommodated in a single species. Therefore, the varieties were reclassified as new species: A. pullulans, A. melanogenum , A. subglaciale , and A. namibiae . [5]

The genome of A. pullulanss. str. contains large numbers of genes of gene families that can be linked to the nutritional versatility of the species and its stress tolerance. [5] The genome also contains a homothallic mating-type locus. [5] [9] Further genome sequencing of fifty A. pullulanss. str. strains showed that the population of the species is homogeneous, with high levels of recombination and good dispersal. The species A. pullulans was thus recognised as a true generalist, able to inhabit a wide variety of habitats with no specialization to any of these habitats at the genomic level. [9] Despite the presence in the genome of a putative mating locus, and the observation of high recombination rates, no sexual cycle has yet been reported in this organism. [ citation needed ]

Due to the relatively recent redefinition of the species, most published work does not yet distinguish between the new species belonging to the previously recognised A. pullulans species complex. It is therefore not clear to what extent this knowledge is valid for A. pullulanss. str. and what should be attributed to the three new species.[ citation needed ]

See also

Related Research Articles

A halophile is an extremophile that thrives in high salt concentrations. In chemical terms, halophile refers to a Lewis acidic species that has some ability to extract halides from other chemical species.

<span class="mw-page-title-main">Yeast</span> Informal group of fungi

Yeasts are eukaryotic, single-celled microorganisms classified as members of the fungus kingdom. The first yeast originated hundreds of millions of years ago, and at least 1,500 species are currently recognized. They are estimated to constitute 1% of all described fungal species.

Halotolerance is the adaptation of living organisms to conditions of high salinity. Halotolerant species tend to live in areas such as hypersaline lakes, coastal dunes, saline deserts, salt marshes, and inland salt seas and springs. Halophiles are organisms that live in highly saline environments, and require the salinity to survive, while halotolerant organisms can grow under saline conditions, but do not require elevated concentrations of salt for growth. Halophytes are salt-tolerant higher plants. Halotolerant microorganisms are of considerable biotechnological interest.

<i>Eremothecium gossypii</i> Species of fungus

Eremothecium gossypii (also known as Ashbya gossypii) is a filamentous fungus or mold closely related to yeast, but growing exclusively in a filamentous way. It was originally isolated from cotton as a pathogen causing stigmatomycosis by Ashby and Nowell in 1926. This disease affects the development of hair cells in cotton bolls and can be transmitted to citrus fruits, which thereupon dry out and collapse (dry rot disease). In the first part of the 20th century, E. gossypii and two other fungi causing stigmatomycosis (Eremothecium coryli, Aureobasidium pullulans) made it virtually impossible to grow cotton in certain regions of the subtropics, causing severe economical losses. Control of the spore-transmitting insects - cotton stainer (Dysdercus suturellus) and Antestiopsis (antestia bugs) - permitted full eradication of infections. E. gossypii was recognized as a natural overproducer of riboflavin (vitamin B2), which protects its spores against ultraviolet light. This made it an interesting organism for industries, where genetically modified strains are still used to produce this vitamin.

<i>Hortaea werneckii</i> Species of fungus

Hortaea werneckii is a species of yeast in the family Teratosphaeriaceae. It is a black yeast that is investigated for its remarkable halotolerance. While the addition of salt to the medium is not required for its cultivation, H. werneckii can grow in close to saturated NaCl solutions. To emphasize this unusually wide adaptability, and to distinguish H. werneckii from other halotolerant fungi, which have lower maximum salinity limits, some authors describe H. werneckii as "extremely halotolerant".

<span class="mw-page-title-main">Wallemiomycetes</span> Class of fungi

The Wallemiomycetes are a class of fungi in the division Basidiomycota. It consists of the single order Wallemiales, containing the single family Wallemiaceae, which in turn contains the single genus Wallemia. The phylogenetic origin of the lineage was placed to various parts of Basidiomycota, but according to the analysis of a larger dataset it is a sister group of Agaricomycotina. The genus contains species of xerophilic molds that are found worldwide. The seven described species are distinguished by conidial size, xerotolerance, halotolerance, chaotolerance, growth temperature regimes, extracellular enzyme activity profiles, and secondary metabolite patterns. They are typically isolated from low-moisture foods, indoor air dust, salterns and soil. W. sebi is thought to be one of the causes of the hypersensitivity pneumonitis known as the farmer's lung disease, but since the other species were recognised and separated from W. sebi only recently, their role in the disease cannot be excluded.

Black yeasts, sometimes also black fungi, dematiaceous fungi, microcolonial fungi or meristematic fungi is a diverse group of slow-growing microfungi which reproduce mostly asexually. Only few genera reproduce by budding cells, while in others hyphal or meristematic (isodiametric) reproduction is preponderant. Black yeasts share some distinctive characteristics, in particular a dark colouration (melanisation) of their cell wall. Morphological plasticity, incrustation of the cell wall with melanins and presence of other protective substances like carotenoids and mycosporines represent passive physiological adaptations which enable black fungi to be highly resistant against environmental stresses. The term "polyextremotolerance" has been introduced to describe this phenotype, an example of which is the species Aureobasidium pullulans. Presence of 1,8-dihydroxynaphthalene melanin in the cell wall confers to the microfungi their characteristic olivaceous to dark brown/black colour.

<i>Wallemia sebi</i> Species of fungus

Wallemia sebi is a xerophilic fungus of the phylum Basidiomycota.

<i>Wallemia ichthyophaga</i> Species of fungus

Wallemia ichthyophaga is one of the three species of fungi in the genus Wallemia, which in turn is the only genus of the class Wallemiomycetes. The phylogenetic origin of the lineage was placed to various parts of Basidiomycota, but according to the analysis of larger datasets it is a (495-million-years-old) sister group of Agaricomycotina. Although initially believed to be asexual, population genomics found evidence of recombination between strains and a mating type locus was identified in all sequenced genomes of the species.

Previously classified under the species complex Aureobasidium pullulans, Aureobasidium subglaciale is a black yeast-like, extremophile, ascomycete fungus that is found in extreme cold habitats. The species was originally isolated from subglacial ice of arctic glaciers. The first isolate of this species was obtained from subglacial ice of the Norwegian island Spitsbergen, one of the coldest places inhabited by humans. of Genomic data collected from specimens in the Aureobasidium pullulans complex justified distinction of four different species

Aspergillus restrictus is a species of fungus in the genus Aspergillus. It is from the Restricti section. The species was first described in 1931. It is xerophilic, frequently found in house dust. Studies have suggested that it is an allergen implicated in asthma. In 2016, the genome of A. restrictus was sequenced as a part of the Aspergillus whole-genome sequencing project - a project dedicated to performing whole-genome sequencing of all members of the genus Aspergillus. The genome assembly size was 23.26 Mbp.

Aureobasidium melanogenum, formerly known as Aureobasidium pullulans var. melanogenum is a ubiquitous black, yeast-like fungus that is found mainly in freshwater habitats. The species also includes strains causing human infections, which were previously classified as A. pullulans. It was named due to abundant melanin production and accumulation in the cell walls, which leads to dark green, brown or black appearance of the cells and colonies The species was established when the genomes of the four former varieties of Aureobasidium pullulans were sequenced and the large differences between them were discovered.

Aureobasidium namibiae, formerly known as Aureobasidium pullulans var. namibiae is a ubiquitous black, yeast-like fungus. It was described on the basis of only one strain isolated from dolomitic marble in Namibia. The species was established when the genomes of the four former varieties of Aureobasidium pullulans were sequenced and the large differences between them were discovered.

Aspergillus stella-maris is a species of fungus in the genus Aspergillus. It is from the Nidulantes section. The species was first described in 2008. A. stella-maris has been reported to produce emericellin and shamixanthone. It has star-shaped ascospores.

Aspergillus discophorus is a species of fungus in the genus Aspergillus. It is from the Aenei section. The species was first described in 2008. It has been isolated from soil in Spain.

Aspergillus halophilicus is a species of fungus in the genus Aspergillus. It is from the Restricti section. The species was first described in 1959. It has been isolated from dried corn in the United States and a textile in the Netherlands. It has been reported to produce chaetoviridin A, deoxybrevianamid E, pseurotin A, pseurotin D, rugulusovin, stachybotryamide, and tryprostatin B.

Wallemia mellicola is a xerophilic fungus of the phylum Basidiomycota, described in 2015 upon taxonomic revision of the species Wallemia sebi. A large amount of published research referring to W. sebi was likely actually performed on W. mellicola. An example of this is the sequencing of the W. mellicola genome, which was published under the name of W. sebi.

Fungal genomes are among the smallest genomes of eukaryotes. The sizes of fungal genomes range from less than 10 Mbp to hundreds of Mbp. The average genome size is approximately 37 Mbp in Ascomycota, 47 Mbp in Basidiomycota and 75 Mbp in Oomycota. The sizes and gene numbers of the smallest genomes of free-living fungi such as those of Wallemia ichthyophaga, Wallemia mellicola or Malassezia restricta are comparable to bacterial genomes. The genome of the extensively researched yeast Saccharomyces cerevisiae contains approximately 12 Mbp and was the first completely sequenced eukaryotic genome. Due to their compact size fungal genomes can be sequenced with less resources than most other eukaryotic genomes and are thus important models for research. Some fungi exist as stable haploid, diploid, or polyploid cells, others change ploidy in response to environmental conditions and aneuploidy is also observed in novel environments or during periods of stress.

<i>Aureobasidium</i> Genus of fungi

Aureobasidium is a genus of fungi belonging to the family Dothioraceae.

References

  1. Andrews, J. H.; Spear, R. N.; Nordheim, E. V. (2002). "Population biology of Aureobasidium pullulans on apple leaf surfaces". Canadian Journal of Microbiology. 48 (6): 500–13. doi:10.1139/w02-044. PMID   12166677.
  2. Chi, Z; Wang, F; Chi, Z; Yue, L; Liu, G; Zhang, T (2009). "Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast". Applied Microbiology and Biotechnology. 82 (5): 793–804. doi:10.1007/s00253-009-1882-2. PMID   19198830. S2CID   6356992.
  3. Ferreira-Pinto, M. M.; Moura-Guedes, M. C.; Barreiro, M. G.; Pais, I; Santos, M. R.; Silva, M. J. (2006). "Aureobasidium pullulansas a biocontrol agent of blue mold in "Rocha" pear". Communications in Agricultural and Applied Biological Sciences. 71 (3 Pt B): 973–8. PMID   17390846.
  4. Zhang, D; Spadaro, D; Valente, S; Garibaldi, A; Gullino, M. L. (2012). "Cloning, characterization, expression and antifungal activity of an alkaline serine protease of Aureobasidium pullulans PL5 involved in the biological control of postharvest pathogens". International Journal of Food Microbiology. 153 (3): 453–64. doi:10.1016/j.ijfoodmicro.2011.12.016. hdl: 2318/88995 . PMID   22225984. S2CID   42311632.
  5. 1 2 3 4 Gostinčar, Cene; Ohm, Robin A; Kogej, Tina; Sonjak, Silva; Turk, Martina; Zajc, Janja; Zalar, Polona; Grube, Martin; Sun, Hui; Han, James; Sharma, Aditi; Chiniquy, Jennifer; Ngan, Chew Yee; Lipzen, Anna; Barry, Kerrie; Grigoriev, Igor V; Gunde-Cimerman, Nina (2014). "Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species". BMC Genomics. 15 (1): 549. doi: 10.1186/1471-2164-15-549 . PMC   4227064 . PMID   24984952.
  6. 1 2 Slepecky, R. A.; Starmer, W. T. (2009). "Phenotypic plasticity in fungi: A review with observations on Aureobasidium pullulans". Mycologia. 101 (6): 823–32. doi:10.3852/08-197. PMID   19927747. S2CID   24313971.
  7. Gostinčar, C.; Grube, M.; Gunde-Cimerman, N. (2011). "Evolution of Fungal Pathogens in Domestic Environments?". Fungal Biol. 115 (10): 1008–1018. doi:10.1016/j.funbio.2011.03.004. PMID   21944213.
  8. Zalar, P.; Gostincar, C.; De Hoog, G. S.; Ursic, V.; Sudhadham, M.; Gunde-Cimerman, N. (2008). "Redefinition of Aureobasidium pullulans and its varieties". Studies in Mycology. 61: 21–38. doi:10.3114/sim.2008.61.02. PMC   2610310 . PMID   19287524.
  9. 1 2 Gostinčar, Cene; Turk, Martina; Zajc, Janja; Gunde-Cimerman, Nina (October 2019). "Fifty Aureobasidium pullulans genomes reveal a recombining polyextremotolerant generalist". Environmental Microbiology. 21 (10): 3638–3652. Bibcode:2019EnvMi..21.3638G. doi:10.1111/1462-2920.14693. ISSN   1462-2920. PMC   6852026 . PMID   31112354.

Further reading