Bacillus methanolicus

Last updated • 1 min readFrom Wikipedia, The Free Encyclopedia

Bacillus methanolicus
Cell pellets of recombinant B. methanolicus.jpg
Cell pellets of recombinant B. methanolicus MGA3 (pHP13) and MGA3 (pTH1mp-crtMN) strains cultivated in SWE50 medium. [1]
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Bacillota
Class: Bacilli
Order: Bacillales
Family: Bacillaceae
Genus: Bacillus
Species:
B. methanolicus
Binomial name
Bacillus methanolicus
Arfman, 1992

Bacillus methanolicus is a gram positive, thermophilic, methylotrophic member of the genus Bacillus . The most well characterized strain of the species, Bacillus methanolicus MGA3, was isolated from freshwater marsh soils, and grows rapidly in cultures heated to up to 60 °C using only methanol as a carbon source. [2] The genome of B. methanolicus MGA3 was fully sequenced in 2014, revealing a 3,337,035 bp linear chromosome and two natural plasmids, pBM19 and pBM69. [3]

Contents

Chemical production from methanol

Researchers are currently investigating the use of B. methanolicus MGA3 for production of chemicals such as L-glutamate, L-lysine, cadaverine and gamma-aminobutyric acid from methanol. [2] [4] [5]

Synthetic methylotrophy

The methylotrophic metabolism of B. methanolicus is being explored for establishing synthetic methylotrophy in other organisms. Recombinant expression of the pentose phosphate pathway from B. methanolicus in E. coli has shown promise in creating synthetically methylotrophic E. coli. [6]

Related Research Articles

Methylotrophs are a diverse group of microorganisms that can use reduced one-carbon compounds, such as methanol or methane, as the carbon source for their growth; and multi-carbon compounds that contain no carbon-carbon bonds, such as dimethyl ether and dimethylamine. This group of microorganisms also includes those capable of assimilating reduced one-carbon compounds by way of carbon dioxide using the ribulose bisphosphate pathway. These organisms should not be confused with methanogens which on the contrary produce methane as a by-product from various one-carbon compounds such as carbon dioxide. Some methylotrophs can degrade the greenhouse gas methane, and in this case they are called methanotrophs. The abundance, purity, and low price of methanol compared to commonly used sugars make methylotrophs competent organisms for production of amino acids, vitamins, recombinant proteins, single-cell proteins, co-enzymes and cytochromes.

<i>Komagataella</i> Genus of fungus used industrially and as model organism

Komagataella is a methylotrophic yeast within the order Saccharomycetales. It was found in the 1960s as Pichia pastoris, with its feature of using methanol as a source of carbon and energy. In 1995, P. pastoris was reassigned into the sole representative of genus Komagataella, becoming Komagataella phaffii. Later studies have further distinguished new species in this genus, resulting in a total of 7 recognized species. It is not uncommon to see the old name still in use in the context of protein production, as of 2023; in less formal use, the yeast may confusingly be referred to as pichia.

<span class="mw-page-title-main">Butanol fuel</span> Fuel for internal combustion engines

Butanol may be used as a fuel in an internal combustion engine. It is more similar to gasoline than it is to ethanol. A C4-hydrocarbon, butanol is a drop-in fuel and thus works in vehicles designed for use with gasoline without modification. Both n-butanol and isobutanol have been studied as possible fuels. Both can be produced from biomass (as "biobutanol" ) as well as from fossil fuels (as "petrobutanol"). The chemical properties depend on the isomer (n-butanol or isobutanol), not on the production method.

Pink-Pigmented Facultative Methylotrophs, commonly abbreviated to PPFMs, are bacteria that are members of the genus Methylobacterium and are commonly found in soil, dust, various fresh water supplies and on plant surfaces. Although Gram negative, Methylobacteria often stain gram variable and are easily isolated using methanol-based mineral medium. Their pigmentation, which is frequently pink but may also be yellow or orange, is thought to provide protection from solar UV radiation which damages the DNA of bacteria at low doses because of their small cell size. This color is present due to the carotenoid pigments within the cell.

<span class="mw-page-title-main">Aspartate kinase</span> Class of enzymes

Aspartate kinase or aspartokinase (AK) is an enzyme that catalyzes the phosphorylation of the amino acid aspartate. This reaction is the first step in the biosynthesis of three other amino acids: methionine, lysine, and threonine, known as the "aspartate family". Aspartokinases are present only in microorganisms and plants, but not in animals, which must obtain aspartate-family amino acids from their diet. Consequently, methionine, lysine and threonine are essential amino acids in animals.

<span class="mw-page-title-main">Amino acid synthesis</span> The set of biochemical processes by which amino acids are produced

Amino acid biosynthesis is the set of biochemical processes by which the amino acids are produced. The substrates for these processes are various compounds in the organism's diet or growth media. Not all organisms are able to synthesize all amino acids. For example, humans can synthesize 11 of the 20 standard amino acids. These 11 are called the non-essential amino acids.

<span class="mw-page-title-main">6-Phosphogluconate dehydrogenase</span> Class of enzymes

6-Phosphogluconate dehydrogenase (6PGD) is an enzyme in the pentose phosphate pathway. It forms ribulose 5-phosphate from 6-phosphogluconate:

<span class="mw-page-title-main">Transaldolase</span> Enzyme family

Transaldolase is an enzyme of the non-oxidative phase of the pentose phosphate pathway. In humans, transaldolase is encoded by the TALDO1 gene.

Acetyl-CoA synthetase (ACS) or Acetate—CoA ligase is an enzyme involved in metabolism of acetate. It is in the ligase class of enzymes, meaning that it catalyzes the formation of a new chemical bond between two large molecules.

Methylorubrum extorquens is a Gram-negative bacterium. Methylorubrum species often appear pink, and are classified as pink-pigmented facultative methylotrophs, or PPFMs. The wild type has been known to use both methane and multiple carbon compounds as energy sources. Specifically, M. extorquens has been observed to use primarily methanol and C1 compounds as substrates in their energy cycles. It has been also observed that use lanthanides as a cofactor to increase its methanol dehydrogenase activity

<i>Ogataea polymorpha</i> Species of fungus

Ogataea polymorpha is a methylotrophic yeast with unusual characteristics. It is used as a protein factory for pharmaceuticals.

A yeast expression platform is a strain of yeast used to produce large amounts of proteins, sugars or other compounds for research or industrial uses. While yeast are often more resource-intensive to maintain than bacteria, certain products can only be produced by eukaryotic cells like yeast, necessitating use of a yeast expression platform. Yeasts differ in productivity and with respect to their capabilities to secrete, process and modify proteins. As such, different types of yeast are better suited for different research and industrial applications.

<span class="mw-page-title-main">Lysine riboswitch</span>

The Lysine riboswitch is a metabolite binding RNA element found within certain messenger RNAs that serve as a precision sensor for the amino acid lysine. Allosteric rearrangement of mRNA structure is mediated by ligand binding, and this results in modulation of gene expression. Lysine riboswitch are most abundant in Bacillota and Gammaproteobacteria where they are found upstream of a number of genes involved in lysine biosynthesis, transport and catabolism. The lysine riboswitch has also been identified independently and called the L box.

Methylobacillus flagellatus is a species of aerobic bacteria.

<span class="mw-page-title-main">Methanol dehydrogenase</span>

In enzymology, a methanol dehydrogenase (MDH) is an enzyme that catalyzes the chemical reaction:

Methanol dehydrogenase (nicotinoprotein) (EC 1.1.99.37, NDMA-dependent methanol dehydrogenase, nicotinoprotein methanol dehydrogenase, methanol:N,N-dimethyl-4-nitrosoaniline oxidoreductase) is an enzyme with systematic name methanol:acceptor oxidoreductase. This enzyme catalyses the following chemical reaction

The amino acid-polyamine-organocation (APC) superfamily is the second largest superfamily of secondary carrier proteins currently known, and it contains several Solute carriers. Originally, the APC superfamily consisted of subfamilies under the transporter classification number. This superfamily has since been expanded to include eighteen different families.

Methylophaga muralis is a species of Pseudomonadota. It is capable of surviving in saline and alkaline environments and can obtain its carbon from methanol. This species was originally discovered in crumbling marble in the Moscow Kremlin; it has also been found in a soda lake in Buryatia.

Methylophaga thiooxydans is a methylotrophic bacterium that requires high salt concentrations for growth. It was originally isolated from a culture of the algae Emiliania huxleyi, where it grows by breaking down dimethylsulfoniopropionate from E. hexleyi into dimethylsulfide and acrylate. M. thiooxydans has been implicated as a dominant organism in phytoplankton blooms, where it consumes dimethylsulfide, methanol and methyl bromide released by dying phytoplankton. It was also identified as one of the dominant organisms present in the plume following the Deepwater Horizon oil spill, and was identified as a major player in the breakdown of methanol in coastal surface water in the English Channel.

<span class="mw-page-title-main">Synthetic microbial consortia</span> Engineered microbial groups for specific tasks

Synthetic microbial consortia or Synthetic microbial communities are multi-population systems that can contain a diverse range of microbial species, and are adjustable to serve a variety of industrial, ecological, and tautological interests. For synthetic biology, consortia take the ability to engineer novel cell behaviors to a population level.

References

  1. Hakvåg, Sigrid; Nærdal, Ingemar; Heggeset, Tonje M. B.; Kristiansen, Kåre A.; Aasen, Inga M.; Brautaset, Trygve (9 April 2020). "Production of Value-Added Chemicals by Bacillus methanolicus Strains Cultivated on Mannitol and Extracts of Seaweed Saccharina latissima at 50°C". Frontiers in Microbiology. 11: 680. doi: 10.3389/fmicb.2020.00680 . PMC   7161427 . PMID   32328058.
  2. 1 2 Schendel, Frederick J.; Bremmon, Craig E.; Flickinger, Michael C.; Guettler, Michael; Hanson, Richard S. (1990-04-01). "L-Lysine Production at 50 °C by Mutants of a Newly Isolated and Characterized Methylotrophic Bacillus sp". Applied and Environmental Microbiology. 56 (4): 963–970. doi:10.1128/AEM.56.4.963-970.1990. PMC   184329 . PMID   2111119.
  3. Irla, Marta; Neshat, Armin; Winkler, Anika; Albersmeier, Andreas; Heggeset, Tonje M.B.; Brautaset, Trygve; Kalinowski, Jörn; Wendisch, Volker F.; Rückert, Christian (2014). "Complete genome sequence of Bacillus methanolicus MGA3, a thermotolerant amino acid producing methylotroph". Journal of Biotechnology. 188: 110–111. doi:10.1016/j.jbiotec.2014.08.013. ISSN   0168-1656. PMID   25152427.
  4. Naerdal, Ingemar; Pfeifenschneider, Johannes; Brautaset, Trygve; Wendisch, Volker F. (2015). "Methanol-based cadaverine production by genetically engineeredBacillus methanolicusstrains". Microbial Biotechnology. 8 (2): 342–350. doi: 10.1111/1751-7915.12257 . ISSN   1751-7915. PMC   4353347 . PMID   25644214.
  5. Irla, Marta; Nærdal, Ingemar; Brautaset, Trygve; Wendisch, Volker F. (2017). "Methanol-based γ-aminobutyric acid (GABA) production by genetically engineered Bacillus methanolicus strains". Industrial Crops and Products. 106: 12–20. doi:10.1016/j.indcrop.2016.11.050. ISSN   0926-6690.
  6. Bennett, R. Kyle; Gonzalez, Jacqueline E.; Whitaker, W. Brian; Antoniewicz, Maciek R.; Papoutsakis, Eleftherios T. (2018). "Expression of heterologous non-oxidative pentose phosphate pathway from Bacillus methanolicus and phosphoglucose isomerase deletion improves methanol assimilation and metabolite production by a synthetic Escherichia coli methylotroph". Metabolic Engineering. 45: 75–85. doi: 10.1016/j.ymben.2017.11.016 . ISSN   1096-7176. OSTI   1411402. PMID   29203223.