Bifidobacterium adolescentis

Last updated • 2 min readFrom Wikipedia, The Free Encyclopedia

Bifidobacterium adolescentis
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Actinomycetota
Class: Actinomycetia
Order: Bifidobacteriales
Family: Bifidobacteriaceae
Genus: Bifidobacterium
Species:
B. adolescentis
Binomial name
Bifidobacterium adolescentis
Reuter 1963 (Approved Lists 1980)

Bifidobacterium adolescentis is an anaerobic species of bacteria found in the gastrointestinal tracts of humans and other primates. [1] It is one of the most abundant and prevalent Bifidobacterium species detected in human populations, especially in adults. [2] [3]

Research into health benefits

Bifidobacterium adolescentis has been studied for its health benefits, as strains have been shown to potentially protect against or improve recovery from several diseases, including liver-related, [4] metabolic, [5] allergic airway, [6] colitis, [7] arthritis, [8] and bacterial infections. [9] Strains have also been demonstrated to possess anti-inflammatory, [10] anxiolytic, [11] antioxidant, [12] antidepressant, [13] and/or antiviral [14] activity.

In addition, B. adolescentis strains have been of interest for their ability to metabolize prebiotics such as arabinoxylan, [15] XOS, [16] and GOS. [17] Bifidobacteria typically produce acetic acid and lactic acid, though the exact ratio depends on the bacterial strain, the carbohydrate being metabolized, and the growth conditions. [18] Production of short chain fatty acids and lactic acid in the colon is associated with health benefits. [19]

Bifidobacterium adolescentis contributes to the production of GABA, [20] a neurotransmitter that plays a role in reducing stress and anxiety. Some B. adolescentis strains can also synthesize B vitamins, [21] such as folic acid. [22] One strain has been shown to be bifidogenic in the GI tract. That is, the presence of one B. adolescentis strain enhances the growth of all bifidobacteria, a group that generally confers positive health benefits [23] and is important for healthy aging. [24]

Some B. adolescentis have been shown to strengthen the intestinal barrier [25] that is important in preventing pathogenic bacteria and toxins from traveling from the gut lumen into the body. Another study suggested the opposite effect: an undefined B. adolescentis strain was observed to disrupt gut barrier functions in colonic epithelial cell cultures. [26]

Multiple probiotics are marked as containing B. adolescentis, however there are a limited number of commercially available strains (PRL2019, [20] iVS1 [25] ) with published scientific studies supporting their health claims.

Related Research Articles

<span class="mw-page-title-main">Human microbiome</span> Microorganisms in or on human skin and biofluids

The human microbiome is the aggregate of all microbiota that reside on or within human tissues and biofluids along with the corresponding anatomical sites in which they reside, including the gastrointestinal tract, skin, mammary glands, seminal fluid, uterus, ovarian follicles, lung, saliva, oral mucosa, conjunctiva, and the biliary tract. Types of human microbiota include bacteria, archaea, fungi, protists, and viruses. Though micro-animals can also live on the human body, they are typically excluded from this definition. In the context of genomics, the term human microbiome is sometimes used to refer to the collective genomes of resident microorganisms; however, the term human metagenome has the same meaning.

<span class="mw-page-title-main">Actinomycetota</span> Phylum of bacteria

The Actinomycetota are a diverse phylum of Gram-positive bacteria with high GC content. They can be terrestrial or aquatic. They are of great importance to land flora because of their contributions to soil systems. In soil they help to decompose the organic matter of dead organisms so the molecules can be taken up anew by plants. While this role is also played by fungi, Actinomycetota are much smaller and likely do not occupy the same ecological niche. In this role the colonies often grow extensive mycelia, as fungi do, and the name of an important order of the phylum, Actinomycetales, reflects that they were long believed to be fungi. Some soil actinomycetota live symbiotically with the plants whose roots pervade the soil, fixing nitrogen for the plants in exchange for access to some of the plant's saccharides. Other species, such as many members of the genus Mycobacterium, are important pathogens.

<span class="mw-page-title-main">Probiotic</span> Microorganisms said to provide health benefits when consumed

Probiotics are live microorganisms promoted with claims that they provide health benefits when consumed, generally by improving or restoring the gut microbiota. Probiotics are considered generally safe to consume, but may cause bacteria-host interactions and unwanted side effects in rare cases. There is some evidence that probiotics are beneficial for some conditions, such as helping to ease some symptoms of irritable bowel syndrome (IBS). However, many claimed health benefits, such as treating eczema, lack substantial scientific support.

Lactiplantibacillus plantarum is a widespread member of the genus Lactiplantibacillus and commonly found in many fermented food products as well as anaerobic plant matter. L. plantarum was first isolated from saliva. Based on its ability to temporarily persist in plants, the insect intestine and in the intestinal tract of vertebrate animals, it was designated as a nomadic organism. L. plantarum is Gram positive, bacilli shaped bacterium. L. plantarum cells are rods with rounded ends, straight, generally 0.9–1.2 μm wide and 3–8 μm long, occurring singly, in pairs or in short chains. L. plantarum has one of the largest genomes known among the lactic acid bacteria and is a very flexible and versatile species. It is estimated to grow between pH 3.4 and 8.8. Lactiplantibacillus plantarum can grow in the temperature range 12 °C to 40 °C. The viable counts of the "L. plantarum" stored at refrigerated condition (4 °C) remained high, while a considerable reduction in the counts was observed stored at room temperature.

Prebiotics are compounds in food that foster growth or activity of beneficial microorganisms such as bacteria and fungi. The most common environment concerning their effects on human health is the gastrointestinal tract, where prebiotics can alter the composition of organisms in the gut microbiome.

<span class="mw-page-title-main">Gut microbiota</span> Community of microorganisms in the gut

Gut microbiota, gut microbiome, or gut flora are the microorganisms, including bacteria, archaea, fungi, and viruses, that live in the digestive tracts of animals. The gastrointestinal metagenome is the aggregate of all the genomes of the gut microbiota. The gut is the main location of the human microbiome. The gut microbiota has broad impacts, including effects on colonization, resistance to pathogens, maintaining the intestinal epithelium, metabolizing dietary and pharmaceutical compounds, controlling immune function, and even behavior through the gut–brain axis.

A bifidus factor is a compound that specifically enhances the growth of bifidobacteria in either a product or in the intestines of humans and/or animals. Several products have been marketed as bifidogenic factors, such as several prebiotics and methyl-N-acetyl D-glucosamine in human milk.

Oxalobacter formigenes is a Gram negative oxalate-degrading anaerobic bacterium that was first isolated from the gastrointestinal tract of a sheep in 1985. To date, the bacterium has been found to colonize the large intestines of numerous vertebrates, including humans, and has even been isolated from freshwater sediment. It processes oxalate by decarboxylation into formate, producing energy for itself in the process.

<span class="mw-page-title-main">Microbiota</span> Community of microorganisms

Microbiota are the range of microorganisms that may be commensal, mutualistic, or pathogenic found in and on all multicellular organisms, including plants. Microbiota include bacteria, archaea, protists, fungi, and viruses, and have been found to be crucial for immunologic, hormonal, and metabolic homeostasis of their host.

Faecalibacterium is a genus of bacteria. The genus contains several species including Faecalibacterium prausnitzii, Faecalibacterium butyricigenerans, Faecalibacterium longum, Faecalibacterium duncaniae, Faecalibacterium hattorii, and Faecalibacterium gallinarum. Its first known species, Faecalibacterium prausnitzii is gram-positive, mesophilic, rod-shaped, and anaerobic, and is one of the most abundant and important commensal bacteria of the human gut microbiota. It is non-spore forming and non-motile. These bacteria produce butyrate and other short-chain fatty acids through the fermentation of dietary fiber. The production of butyrate makes them an important member of the gut microbiota, fighting against inflammation.

<i>Bifidobacterium longum</i> Species of bacterium

Bifidobacterium longum is a Gram-positive, catalase-negative, rod-shaped bacterium present in the human gastrointestinal tract and one of the 32 species that belong to the genus Bifidobacterium. It is a microaerotolerant anaerobe and considered to be one of the earliest colonizers of the gastrointestinal tract of infants. When grown on general anaerobic medium, B. longum forms white, glossy colonies with a convex shape. B. longum is one of the most common bifidobacteria present in the gastrointestinal tracts of both children and adults. B. longum is non-pathogenic, is often added to food products, and its production of lactic acid is believed to prevent growth of pathogenic organisms.

Clostridium cadaveris is an enteric, gas-forming, motile, strictly anaerobic gram-positive bacterium of the genus Clostridium. First described by Klein in 1899, it was noted to be the most prominent bacteria during human decomposition; historically it was described as "putrefying flora".

<i>Bifidobacterium</i> Genus of bacteria

Bifidobacterium is a genus of gram-positive, nonmotile, often branched anaerobic bacteria. They are ubiquitous inhabitants of the gastrointestinal tract though strains have been isolated from the vagina and mouth of mammals, including humans. Bifidobacteria are one of the major genera of bacteria that make up the gastrointestinal tract microbiota in mammals. Some bifidobacteria are used as probiotics.

<span class="mw-page-title-main">Xylooligosaccharide</span> Polymer of the sugar xylose

Xylooligosaccharides (XOS) are polymers of the sugar xylose. They are produced from the xylan fraction in plant fiber. Their C5 structure is fundamentally different from other prebiotics, which are based upon C6 sugars. Xylooligosaccharides have been commercially available since the 1980s, originally produced by Suntory in Japan. They have more recently become more widely available commercially, as technologies have advanced and production costs have fallen. Some enzymes from yeast can exclusively convert xylan into only xylooligosaccharides-DP-3 to 7.

Bifidobacterium ruminantium is a bacterium found in bovine rumens.

Bifidobacterium asteroides is a gram-positive, rod-shaped species of bacteria. Various strains of this species have been isolated from the hindguts of honey bees. Prior to 1969, this species was referred to as strains of Bacillus constellatus.

<i>Bifidobacterium bifidum</i> Species of bacterium

Bifidobacterium bifidum is a bacterial species of the genus Bifidobacterium. B. bifidum is one of the most common probiotic bacteria that can be found in the body of mammals, including humans.

https://journals.sbmu.ac.ir/afb/issue/view/2622

<span class="mw-page-title-main">Parabacteroides</span> Genus of bacteria

Parabacteroides is a Gram-negative, anaerobic, non-spore-forming genus from the family Tannerellaceae.

<span class="mw-page-title-main">Human milk microbiome</span> Community of microorganisms in human milk

The human milk microbiota, also known as human milk probiotics (HMP), encompasses the microbiota–the community of microorganisms–present within the human mammary glands and breast milk. Contrary to the traditional belief that human breast milk is sterile, advancements in both microbial culture and culture-independent methods have confirmed that human milk harbors diverse communities of bacteria. These communities are distinct in composition from other microbial populations found within the human body which constitute the human microbiome.

References

  1. Lugli, Gabriele Andrea; Alessandri, Giulia; Milani, Christian; Mancabelli, Leonardo; Ruiz, Lorena; Fontana, Federico; Borragán, Santiago; González, Andrea; Turroni, Francesca; Ossiprandi, Maria Cristina; Margolles, Abelardo; van Sinderen, Douwe; Ventura, Marco (August 2020). "Evolutionary development and co-phylogeny of primate-associated bifidobacteria". Environmental Microbiology. 22 (8): 3375–3393. doi:10.1111/1462-2920.15108. hdl: 10261/223012 . PMID   32515117. S2CID   219552451.
  2. Derrien, Muriel; Turroni, Francesca; Ventura, Marco; van Sinderen, Douwe (October 2022). "Insights into endogenous Bifidobacterium species in the human gut microbiota during adulthood". Trends in Microbiology. 30 (10): 940–947. doi: 10.1016/j.tim.2022.04.004 . PMID   35577716. S2CID   248783095.
  3. Pasolli, Edoardo; Schiffer, Lucas; Manghi, Paolo; Renson, Audrey; Obenchain, Valerie; Truong, Duy Tin; Beghini, Francesco; Malik, Faizan; Ramos, Marcel; Dowd, Jennifer B; Huttenhower, Curtis; Morgan, Martin; Segata, Nicola; Waldron, Levi (November 2017). "Accessible, curated metagenomic data through ExperimentHub". Nature Methods. 14 (11): 1023–1024. doi:10.1038/nmeth.4468. PMC   5862039 . PMID   29088129.
  4. Long, Xiaoxue; Liu, Dan; Gao, Qiongmei; Ni, Jiacheng; Qian, Lingling; Ni, Yueqiong; Fang, Qichen; Jia, Weiping; Li, Huating (30 December 2021). "Bifidobacterium adolescentis Alleviates Liver Steatosis and Steatohepatitis by Increasing Fibroblast Growth Factor 21 Sensitivity". Frontiers in Endocrinology. 12: 773340. doi: 10.3389/fendo.2021.773340 . PMC   8756294 . PMID   35035378.
  5. Chen, Jinjin; Wang, Ren; Li, Xiao-Fang; Wang, Rui-Liang (28 May 2012). "Bifidobacterium adolescentis supplementation ameliorates visceral fat accumulation and insulin sensitivity in an experimental model of the metabolic syndrome". British Journal of Nutrition. 107 (10): 1429–1434. doi: 10.1017/S0007114511004491 . PMID   21914236. S2CID   3480942.
  6. Casaro, M. C., Crisma, A. R., Vieira, A. T., Silva, G. H. M., Mendes, E., Ribeiro, W. R., Martins, F. S., Ferreira, C. M. (10 April 2018). "Prophylactic Bifidobacterium adolescentis ATTCC 15703 supplementation reduces partially allergic airway disease in Balb/c but not in C57BL/6 mice". Beneficial Microbes. 9 (3). Wageningen Academic Publishers: 465–476. doi:10.3920/BM2017.0073. ISSN   1876-2891. PMID   29633635.
  7. Wu, W., Wang, Y., Zou, J., Long, F., Yan, H., Zeng, L., Chen, Y. (5 January 2017). "Bifidobacterium adolescentis protects against necrotizing enterocolitis and upregulates TOLLIP and SIGIRR in premature neonatal rats". BMC Pediatrics. 17 (1). BioMed Central Ltd.: 1–7. doi: 10.1186/s12887-016-0759-7 . ISSN   1471-2431. PMC   5217633 . PMID   28056921.
  8. Fan, Z., Yang, B., Ross, R. P., Stanton, C., Shi, G., Zhao, J., Zhang, H., Chen, W. (26 May 2020). "Protective effects of Bifidobacterium adolescentis on collagen-induced arthritis in rats depend on timing of administration". Food & Function. 11 (5). The Royal Society of Chemistry: 4499–4511. doi:10.1039/D0FO00077A. ISSN   2042-650X. PMID   32383727. S2CID   218555170.
  9. Wittmann, A., Autenrieth, I. B., Frick, J. S. (20 August 2013). "Plasmacytoid dendritic cells are crucial in Bifidobacterium adolescentis-mediated inhibition of Yersinia enterocolitica infection". PLOS ONE. 8 (8). Public Library of Science: e71338. Bibcode:2013PLoSO...871338W. doi: 10.1371/JOURNAL.PONE.0071338 . ISSN   1932-6203. PMC   3748105 . PMID   23977019.
  10. Kawabata, K., Baba, N., Sakano, T., Hamano, Y., Taira, S., Tamura, A., Baba, S., Natsume, M., Ishii, T., Murakami, S., Ohigashi, H. (3 April 2018). "Functional properties of anti-inflammatory substances from quercetin-treated Bifidobacterium adolescentis". Bioscience, Biotechnology, and Biochemistry. 82 (4). Oxford Academic: 689–697. doi: 10.1080/09168451.2017.1401916 . ISSN   0916-8451. PMID   29165050. S2CID   2092475.
  11. Jang, H. M., Jang, S. E., Han, M. J., Kim, D. H. (3 October 2017). "Anxiolytic-like effect of Bifidobacterium adolescentis IM38 in mice with or without immobilisation stress". Beneficial Microbes. 9 (1). Wageningen Academic Publishers: 123–132. doi:10.3920/BM2016.0226. ISSN   1876-2891. PMID   28969445.
  12. Huang, H. C., Chang, T. M. (14 September 2012). "Antioxidative properties and inhibitory effect of Bifidobacterium adolescentis on melanogenesis". World Journal of Microbiology and Biotechnology. 28 (9). Springer: 2903–2912. doi:10.1007/s11274-012-1096-0. ISSN   0959-3993. PMID   22806726. S2CID   21042891.
  13. Guo, Y., Xie, J. P., Deng, K., Li, X., Yuan, Y., Xuan, Q., Xie, J., He, X. M., Wang, Q., Li, J. J., Luo, H. R. (22 May 2019). "Prophylactic effects of Bifidobacterium adolescentis on anxiety and depression-like phenotypes after chronic stress: a role of the gut microbiota-inflammation axis". Frontiers in Behavioral Neuroscience. 13. Frontiers Media SA: 126. doi: 10.3389/FNBEH.2019.00126 . ISSN   1662-5153. PMC   6591489 . PMID   31275120.
  14. Lee, D. K., Kang, J. Y., Shin, H. S., Park, I. H., Ha, N. J. (9 December 2013). "Antiviral activity of Bifidobacterium adolescentis SPM0212 against Hepatitis B virus". Archives of Pharmacal Research. 36 (12). Springer: 1525–1532. doi:10.1007/s12272-013-0141-3. ISSN   0253-6269. PMID   23657805. S2CID   255555304.
  15. Van Laere, K. M. J., Beldman, G., Voragen, A. G. J. (1997). "A new arabinofuranohydrolase from Bifidobacterium adolescentis able to remove arabinosyl residues from double-substituted xylose units in arabinoxylan". Appl Microbiol Biotechnol. 47 (3): 231–235. doi:10.1007/s002530050918. PMID   9114514. S2CID   2347318.
  16. Yang, J., Tang, Q., Xu, L., Li, Z., Ma, Y., Yao, D. (1 November 2019). "Combining of transcriptome and metabolome analyses for understanding the utilization and metabolic pathways of Xylo-oligosaccharide in Bifidobacterium adolescentis ATCC 15703". Food Science & Nutrition. 7 (11). Wiley-Blackwell: 3480–3493. doi:10.1002/FSN3.1194. ISSN   2048-7177. PMC   6848847 . PMID   31762999.
  17. Krumbeck, J. A., Maldonado-Gomez, M. X., Martínez, I., Frese, S. A., Burkey, T. E., Rasineni, K., Ramer-Tait, A. E., Harris, E. N., Hutkins, R. W., Walter, J. (2015). "In vivo selection to identify bacterial strains with enhanced ecological performance in synbiotic applications". Applied and Environmental Microbiology. 81 (7). Appl Environ Microbiol: 2455–2465. Bibcode:2015ApEnM..81.2455K. doi:10.1128/AEM.03903-14. ISSN   1098-5336. PMC   4357922 . PMID   25616794.
  18. McLaughlin, H. P., Motherway, M. O. C., Lakshminarayanan, B., Stanton, C., Paul Ross, R., Brulc, J., Menon, R., O’Toole, P. W., Sinderen, D. van (6 June 2015). "Carbohydrate catabolic diversity of bifidobacteria and lactobacilli of human origin". International Journal of Food Microbiology. 203. Elsevier B.V.: 109–121. doi:10.1016/j.ijfoodmicro.2015.03.008. ISSN   1879-3460. PMID   25817019.
  19. Xiong, R. G., Zhou, D. D., Wu, S. X., Huang, S. Y., Saimaiti, A., Yang, Z. J., Shang, A., Zhao, C. N., Gan, R. Y., Li, H. Bin (2022), "Health Benefits and Side Effects of Short-Chain Fatty Acids", Foods, 11 (18), MDPI: 2863, doi: 10.3390/foods11182863 , PMC   9498509 , PMID   36140990
  20. 1 2 Duranti, S., Ruiz, L., Lugli, G. A., Tames, H., Milani, C., Mancabelli, L., Mancino, W., Longhi, G., Carnevali, L., Sgoifo, A., Margolles, A., Ventura, M., Ruas-Madiedo, P., Turroni, F. (1 December 2020). "Bifidobacterium adolescentis as a key member of the human gut microbiota in the production of GABA". Scientific Reports. 10 (1). Nature Research: 14112. Bibcode:2020NatSR..1014112D. doi:10.1038/s41598-020-70986-z. ISSN   2045-2322. PMC   7445748 . PMID   32839473.
  21. Arunachalam, K. D., Author, C., Arunachalam, K. D., Arunachalam, K. (1999), "Role of Bifidobacteria in Nutrition, Medicine, and Technology", Nutrition Research, 19 (10): 1559–1597, doi:10.1016/S0271-5317(99)00112-8
  22. Rossi, M., Amaretti, A., Raimondi, S. (2011), "Folate production by probiotic bacteria", Nutrients, 3 (1), MDPI AG: 118–134, doi: 10.3390/nu3010118 , PMC   3257725 , PMID   22254078
  23. Hidalgo-Cantabrana, C., Delgado, S., Ruiz, L., Ruas-Madiedo, P., Sánchez, B., Margolles, A. (19 May 2017). "Bifidobacteria and Their Health-Promoting Effects". Microbiology Spectrum. 5 (3). American Society for Microbiology. doi:10.1128/microbiolspec.bad-0010-2016. ISSN   2165-0497. PMC   11687494 . PMID   28643627.
  24. Kumar, M., Babaei, P., Ji, B., Nielsen, J. (28 October 2016). "Human gut microbiota and healthy aging: Recent developments and future prospective". Nutrition and Healthy Aging. 4 (1). IOS Press: 3–16. doi:10.3233/nha-150002. ISSN   2451-9480. PMC   5166512 . PMID   28035338.
  25. 1 2 Krumbeck, J. A., Rasmussen, H. E., Hutkins, R. W., Clarke, J., Shawron, K., Keshavarzian, A., Walter, J. (28 June 2018). "Probiotic Bifidobacterium strains and galactooligosaccharides improve intestinal barrier function in obese adults but show no synergism when used together as synbiotics". Microbiome. 6 (1). BioMed Central Ltd.: 121. doi: 10.1186/s40168-018-0494-4 . ISSN   2049-2618. PMC   6022452 . PMID   29954454.
  26. Bootz-Maoz, H., Pearl, A., Melzer, E., Malnick, S., Sharon, E., Bennet, Y., Tsentsarevsky, R., Abuchatzera, S., Amidror, S., Aretz, E., Azriel, S., Gam Ze Letova, C., Naama, M., Shoval, I., Yaron, O., Karako-Lampert, S., Bel, S., Yissachar, N. (15 November 2022). "Diet-induced modifications to human microbiome reshape colonic homeostasis in irritable bowel syndrome". Cell Reports. 41 (7). Elsevier B.V.: 111657. doi: 10.1016/j.celrep.2022.111657 . ISSN   2211-1247. PMID   36384106.