Bifidobacteriaceae

Last updated

Bifidobacteriaceae
Bifidobacterium adolescentis Gram.jpg
Bifidobacterium adolescentis
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Kingdom: Bacillati
Phylum: Actinomycetota
Class: Actinomycetes
Order: Bifidobacteriales
Stackebrandt et al. 1997 [1]
Family: Bifidobacteriaceae
Stackebrandt et al. 1997 [1]
Type genus
Bifidobacterium
Orla-Jensen 1924 (Approved Lists 1980)
Genera [2]

The Bifidobacteriaceae are the only family of bacteria in the order Bifidobacteriales . [3]

Contents

The family Bifidobacteriaceae stain [Gram-positive], range from obligate to faculatively anaerobic, are non-motile, non-filamentous and non-spore forming. [4] Their morphology is varied and ranges from Y- or V-shaped (from which the bifidobacteria derived their name) to ones with enlarged or flattened ends (club- or spatula-shaped). [5] The branching nature of Bifidobacteria can change with different starins and media. [6] These rods appear as a solitary bacilli or as aggregates in chains or in clumps. [4]

These chemoorganotrophic microorganisms are saccharolytic acid producers and do not produce gas. [4]

The Bifidobacteriaceae family is divided into ten genera ( Bifidobacterium , Aeriscardovia , Alloscardovia , Bombiscardovia , Galliscardovia , Gardnerella , Neoscardovia , Parascardovia , Pseudoscardovia , and Scardovia , [7] with three candidate genera Candidatus Ancillula , Candidatus Opitulatrix , and Candidatus Servula . [8]

Genomics

All Bifidobacteraceae contain a metabolic pathway to catabolise six-carbon sugars (hexoses) which involves the key enzyme fructose-6-phosphate phosphoketolase. This pathway is known as the fructose-6-phosphate pathway or the 'bifid shunt'. [4] [9] [10]

Comparative analysis of aligned protein sequences has led to the discovery of two conserved signature indels which are specific for the order Bifidobacteriales. The first indel, a one amino acid deletion in ribosomal protein L13, is found in all Bifidobacteriales species and no other Actinomycetota , providing a potential molecular marker for the entire Bifidobacteriales order. The second indel that has been identified is a 1 amino acid insertion in glucose-6-phosphate dehydrogenase found in all Bifidobacterium species and G. vaginalis, but not in any other Actinomycetota. This indel is thus characteristic of the clade consisting of Bifidobacterium species and G. vaginalis and can be used to distinguish these genera from the rest of the order Bifidobacteriales. 16 conserved signature proteins have also been identified which are unique to the order Bifidobacteriales and can be used as molecular markers for this order. Additionally, 6 conserved signature proteins which are unique to Bifidobacterium and Gardnerella have been identified, providing further evidence that species from these two genera are closely related and providing molecular markers for the clade consisting of these genera. [11]

Bifidobacteriaceae
Bifidobacterium adolescentis Gram.jpg
Bifidobacterium adolescentis
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Kingdom: Bacillati
Phylum: Actinomycetota
Class: Actinomycetes
Order: Bifidobacteriales
Stackebrandt et al. 1997 [1]
Family: Bifidobacteriaceae
Stackebrandt et al. 1997 [1]
Type genus
Bifidobacterium
Orla-Jensen 1924 (Approved Lists 1980)
Genera [2]

The Bifidobacteriaceae are the only family of bacteria in the order Bifidobacteriales . [12]

The Bifidobacteriaceae family is divided into ten genera ( Bifidobacterium , Aeriscardovia , Alloscardovia , Bombiscardovia , Galliscardovia , Gardnerella , Neoscardovia , Parascardovia , Pseudoscardovia and Scardovia [13] with three candidate genera Candidatus Ancillula , Candidatus Opitulatrix , and Candidatus Servula . [14]

Genomics

All Bifidobacteraceae contain a peculiar metabolic pathway to catabolise six-carbon sugars (hexoses) involving the key enzyme Fructose-6-phosphate phosphoketolase (EC 4.1.2.2), known as the fructose-6-phosphate pathway or the 'bifid shunt'. [4]

Comparative analysis of aligned protein sequences has led to the discovery of two conserved signature indels which are specific for the order Bifidobacteriales. The first indel, a 1 amino acid deletion in ribosomal protein L13, is found in all Bifidobacteriales species and no other Actinomycetota , providing a potential molecular marker for the entire Bifidobacteriales order. The second indel that has been identified is a 1 amino acid insertion in glucose-6-phosphate dehydrogenase found in all Bifidobacterium species and G. vaginalis, but not in any other Actinomycetota. This indel is thus characteristic of the clade consisting of Bifidobacterium species and G. vaginalis and can be used to distinguish these genera from the rest of the order Bifidobacteriales. 16 conserved signature proteins have also been identified which are unique to the order Bifidobacteriales and can be used as molecular markers for this order. Additionally, 6 conserved signature proteins which are unique to Bifidobacterium and Gardnerella have been identified, providing further evidence that species from these two genera are closely related and providing molecular markers for the clade consisting of these genera. [15]

Phylogeny

The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN). [2] The phylogeny is based on whole-genome analysis. [16]

outgroup

Actinomycetales

Notes

    References

    1. 1 2 3 4 Stackebrandt E, Rainey FA, Ward-Rainey NL (1997). "Proposal for a new hierarchic classification system, Actinobacteria classis nov". Int. J. Syst. Bacteriol. 47 (2): 479–491. doi: 10.1099/00207713-47-2-479 .
    2. 1 2 3 Euzéby JP, Parte AC. "Bifidobacteriaceae". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved June 15, 2021.
    3. Mantzourani M, Fenlon M, Beighton D (February 2009). "Association between Bifidobacteriaceae and the clinical severity of root caries lesions". Oral Microbiol. Immunol. 24 (1): 32–7. PMID   19121067.
    4. 1 2 3 4 5 D.A. Russell, R.P. Ross, G.F. Fitzgerald, C. Stanton (2011). "Metabolic activities and probiotic potential of bifidobacteria". International Journal of Food Microbiology. 149 (1): 88-105. doi:10.1016/j.ijfoodmicro.2011.06.003. ISSN   0168-1605.{{cite journal}}: CS1 maint: multiple names: authors list (link)
    5. Alessandri G, van Sinderen D, Ventura M. (2021). "The genus bifidobacterium: From genomics to functionality of an important component of the mammalian gut microbiota running title: Bifidobacterial adaptation to and interaction with the host". Comput Struct Biotechnol J. 9 (19): 1472-1487. doi:10.1016/j.csbj.2021.03.006. PMID   33777340.{{cite journal}}: CS1 maint: multiple names: authors list (link)
    6. G.W. Tannock (1999). "Identification of lactobacilli and bifidobacteria". Current Issues in Molecular Biology. 1: 53-64.
    7. Ludwig, W., Euzéby, J.P. and Whitman, W.B. (2015). M.E. Trujillo, S. Dedysh, P. DeVos, B. Hedlund, P. Kämpfer, F.A. Rainey and W.B. Whitman (ed.). "Taxonomic outline of the phylum Actinobacteria". Bergey's Manual of Systematics of Archaea and Bacteria.{{cite journal}}: CS1 maint: multiple names: authors list (link)
    8. Silva JK, Herve V, Mies US, Platt K, Brune A. (2025). "A Novel Lineage of Endosymbiotic Actinomycetales: Genome Reduction and Acquisition of New Functions in Bifidobacteriaceae Associated With Termite Gut Flagellates". Environ Microbiol. 27.{{cite journal}}: CS1 maint: multiple names: authors list (link)
    9. https://pubchem.ncbi.nlm.nih.gov/pathway/BioCyc:META_P124-PWY
    10. Turroni F, Milani C, Duranti S, Mahony J, van Sinderen D, Ventura M. (2018). "Glycan Utilization and Cross-Feeding Activities by Bifidobacteria". Trends Microbiol. 26 (4): 339-350. doi:10.1016/j.tim.2017.10.001.{{cite journal}}: CS1 maint: multiple names: authors list (link)
    11. Gao, B.; Gupta, R. S. (2012). "Phylogenetic Framework and Molecular Signatures for the Main Clades of the Phylum Actinobacteria". Microbiology and Molecular Biology Reviews. 76 (1): 66–112. doi:10.1128/MMBR.05011-11. PMC   3294427 . PMID   22390973.
    12. Mantzourani M, Fenlon M, Beighton D (February 2009). "Association between Bifidobacteriaceae and the clinical severity of root caries lesions". Oral Microbiol. Immunol. 24 (1): 32–7. doi:10.1111/j.1399-302X.2008.00470.x. PMID   19121067.
    13. Ludwig, W., Euzéby, J.P. and Whitman, W.B. (2015). M.E. Trujillo, S. Dedysh, P. DeVos, B. Hedlund, P. Kämpfer, F.A. Rainey and W.B. Whitman (ed.). "Taxonomic outline of the phylum Actinobacteria". Bergey's Manual of Systematics of Archaea and Bacteria.{{cite journal}}: CS1 maint: multiple names: authors list (link)
    14. Silva JK, Herve V, Mies US, Platt K, Brune A. (2025). "A Novel Lineage of Endosymbiotic Actinomycetales: Genome Reduction and Acquisition of New Functions in Bifidobacteriaceae Associated With Termite Gut Flagellates". Environ Microbiol. 27.{{cite journal}}: CS1 maint: multiple names: authors list (link)
    15. Gao, B.; Gupta, R. S. (2012). "Phylogenetic Framework and Molecular Signatures for the Main Clades of the Phylum Actinobacteria". Microbiology and Molecular Biology Reviews. 76 (1): 66–112. doi:10.1128/MMBR.05011-11. PMC   3294427 . PMID   22390973.
    16. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T, Kyrpides NC, Pukall R, Klenk HP, Goodfellow M, Markus Göker M (2018). "Genome-Based Taxonomic Classification of the Phylum Actinobacteria". Front. Microbiol. 9: 2007. doi: 10.3389/fmicb.2018.02007 . PMC   6113628 . PMID   30186281.

    Notes

      References