Black Widow Pulsar

Last updated

Black Widow Pulsar
B1957 comp.tif
The blue and green are optical images of the field in which the black widow pulsar is found, the green indicating the H-alpha bow shock. The red and white are the colors of the shock structures discovered in x-ray by the Chandra X-ray Observatory.
Observation data
Epoch J2000       Equinox J2000
Constellation Sagitta
Right ascension 19h 59m 36.77s
Declination +20° 48 15.12
Apparent magnitude  (V)20.4
Details
Rotation 1.60734 ms
Other designations
QX Sge, PSR J1959+2048, PSR B1957+20
Database references
SIMBAD data

The Black Widow Pulsar (PSR B1957+20) is an eclipsing binary millisecond pulsar in the Milky Way. Discovered in 1988, it is located roughly 6,500 light-years (2,000 parsecs) away from Earth. It orbits with a brown dwarf or Super-Jupiter companion with a period of 9.2 hours with an eclipse duration of approximately 20 minutes. When it was discovered, it was the first such pulsar known. [1] The prevailing theoretical explanation for the system implied that the companion is being destroyed by the strong powerful outflows, or winds, of high-energy particles caused by the neutron star; thus, the sobriquet black widow was applied to the object. Subsequent to this, other objects with similar features have been discovered, and the name has been applied to the class of millisecond pulsars with an ablating companion, as of February 2023 around 41 black widows are known to exist. [2] [3]

Contents

A visual band light curve for QX Sagittae, adapted from van Paradijs et al. (1988) The light from a nearby star of similar brightness is included, and at the curve's minimum all light comes from that star. QXSgeLightCurve.png
A visual band light curve for QX Sagittae, adapted from van Paradijs et al. (1988) The light from a nearby star of similar brightness is included, and at the curve's minimum all light comes from that star.

Later observations of the object showed a bow shock in H-alpha and a smaller-in-extent shock seen in X-rays (as observed by the Chandra X-ray Observatory), indicating a forward velocity of approximately a million kilometers per hour. [5]

In 2010, it was estimated that the neutron star's mass was at least and possibly as high as (the latter of which, if true, would surpass PSR J0740+6620 for the title of most massive neutron star yet detected and place it within range of the Tolman–Oppenheimer–Volkoff limit). [6] In January 2023 the upper limit was revised down to [7] [8]

Planets

The pulsar has a substellar companion, possibly a brown dwarf.

The Black Widow Pulsar planetary system [9]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b22  MJ 0.38

Artist impressions of the Black Widow Pulsar.

See also

Related Research Articles

<span class="mw-page-title-main">Neutron star</span> Collapsed core of a massive star

A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses (M), possibly more if the star was especially metal-rich. Except for black holes, neutron stars are the smallest and densest currently known class of stellar objects. Neutron stars have a radius on the order of 10 kilometres (6 mi) and a mass of about 1.4 M. They result from the supernova explosion of a massive star, combined with gravitational collapse, that compresses the core past white dwarf star density to that of atomic nuclei.

<span class="mw-page-title-main">X-ray binary</span> Class of binary stars

X-ray binaries are a class of binary stars that are luminous in X-rays. The X-rays are produced by matter falling from one component, called the donor, to the other component, called the accretor, which is very compact: a neutron star or black hole. The infalling matter releases gravitational potential energy, up to several tenths of its rest mass, as X-rays. The lifetime and the mass-transfer rate in an X-ray binary depends on the evolutionary status of the donor star, the mass ratio between the stellar components, and their orbital separation.

<span class="mw-page-title-main">47 Tucanae</span> Globular cluster in the constellation Tucana

47 Tucanae or 47 Tuc is a globular cluster located in the constellation Tucana. It is about 4.45 ± 0.01 kpc (15,000 ± 33 ly) away from Earth, and 120 light years in diameter. 47 Tuc can be seen with the naked eye, with an apparent magnitude of 4.1. It appears about 44 arcminutes across including its far outreaches. Due to its far southern location, 18° from the south celestial pole, it was not catalogued by European astronomers until the 1750s, when the cluster was first identified by Nicolas-Louis de Lacaille from South Africa.

<span class="mw-page-title-main">Pulsar</span> Highly magnetized, rapidly rotating neutron star

A pulsar is a highly magnetized rotating neutron star that emits beams of electromagnetic radiation out of its magnetic poles. This radiation can be observed only when a beam of emission is pointing toward Earth, and is responsible for the pulsed appearance of emission. Neutron stars are very dense and have short, regular rotational periods. This produces a very precise interval between pulses that ranges from milliseconds to seconds for an individual pulsar. Pulsars are one of the candidates for the source of ultra-high-energy cosmic rays.

<span class="mw-page-title-main">Millisecond pulsar</span> Pulsar with a rotational period less than about 10 milliseconds

A millisecond pulsar (MSP) is a pulsar with a rotational period less than about 10 milliseconds. Millisecond pulsars have been detected in radio, X-ray, and gamma ray portions of the electromagnetic spectrum. The leading theory for the origin of millisecond pulsars is that they are old, rapidly rotating neutron stars that have been spun up or "recycled" through accretion of matter from a companion star in a close binary system. For this reason, millisecond pulsars are sometimes called recycled pulsars.

<span class="mw-page-title-main">PSR J0737−3039</span> Double pulsar in the constellation Puppis

PSR J0737−3039 is the first known double pulsar. It consists of two neutron stars emitting electromagnetic waves in the radio wavelength in a relativistic binary system. The two pulsars are known as PSR J0737−3039A and PSR J0737−3039B. It was discovered in 2003 at Australia's Parkes Observatory by an international team led by the Italian radio astronomer Marta Burgay during a high-latitude pulsar survey.

<span class="mw-page-title-main">Hulse–Taylor pulsar</span> Pulsar in the constellation Aquila

The Hulse–Taylor pulsar is a binary star system composed of a neutron star and a pulsar which orbit around their common center of mass. It is the first binary pulsar ever discovered.

<span class="mw-page-title-main">Binary pulsar</span> Two pulsars orbiting each other

A binary pulsar is a pulsar with a binary companion, often a white dwarf or neutron star. Binary pulsars are one of the few objects which allow physicists to test general relativity because of the strong gravitational fields in their vicinities. Although the binary companion to the pulsar is usually difficult or impossible to observe directly, its presence can be deduced from the timing of the pulses from the pulsar itself, which can be measured with extraordinary accuracy by radio telescopes.

The Tolman–Oppenheimer–Volkoff limit is an upper bound to the mass of cold, non-rotating neutron stars, analogous to the Chandrasekhar limit for white dwarf stars. If the mass of a neutron star reaches the limit it will collapse to a denser form, most likely a black hole.

<span class="mw-page-title-main">PSR J1748−2446ad</span> Pulsar in the constellation Sagittarius

PSR J1748−2446ad is the fastest-spinning pulsar known, at 716 Hz, or 43,000 revolutions per minute. This pulsar was discovered by Jason W. T. Hessels of McGill University on November 10, 2004 and confirmed on January 8, 2005.

PSR J1903+0327 is a millisecond pulsar in a highly eccentric binary orbit.

<span class="mw-page-title-main">PSR B1937+21</span> Pulsar in the constellation Vulpecula

PSR B1937+21 is a pulsar located in the constellation Vulpecula a few degrees in the sky away from the first discovered pulsar, PSR B1919+21. The name PSR B1937+21 is derived from the word "pulsar" and the declination and right ascension at which it is located, with the "B" indicating that the coordinates are for the 1950.0 epoch. PSR B1937+21 was discovered in 1982 by Don Backer, Shri Kulkarni, Carl Heiles, Michael Davis, and Miller Goss.

PSR J0108−1431 is a solitary pulsar located at a distance of about 130 parsecs (424 light-years) in the constellation Cetus. This pulsar was discovered in 1994 during the Parkes Southern Pulsar Survey. It is considered a very old pulsar with an estimated age of 166 million years and a rotation period of 0.8 seconds. The rotational energy being generated by the spin-down of this pulsar is 5.8 × 1023 W and the surface magnetic field is 2.5 × 107 T. As of 2008, it is the second faintest known pulsar.

PSR J1614–2230 is a pulsar in a binary system with a white dwarf in the constellation Scorpius. It was discovered in 2006 with the Parkes telescope in a survey of unidentified gamma ray sources in the Energetic Gamma Ray Experiment Telescope catalog. PSR J1614–2230 is a millisecond pulsar, a type of neutron star, that spins on its axis roughly 317 times per second, corresponding to a period of 3.15 milliseconds. Like all pulsars, it emits radiation in a beam, similar to a lighthouse. Emission from PSR J1614–2230 is observed as pulses at the spin period of PSR J1614–2230. The pulsed nature of its emission allows for the arrival of individual pulses to be timed. By measuring the arrival time of pulses, astronomers observed the delay of pulse arrivals from PSR J1614–2230 when it was passing behind its companion from the vantage point of Earth. By measuring this delay, known as the Shapiro delay, astronomers determined the mass of PSR J1614–2230 and its companion. The team performing the observations found that the mass of PSR J1614–2230 is 1.97 ± 0.04 M. This mass made PSR J1614–2230 the most massive known neutron star at the time of discovery, and rules out many neutron star equations of state that include exotic matter such as hyperons and kaon condensates.

<span class="mw-page-title-main">PSR J1311–3430</span> Pulsar

PSR J1311–3430 is a pulsar with a spin period of 2.5 milliseconds. It is the first millisecond pulsar found via gamma-ray pulsations. The source was originally identified by the Energetic Gamma Ray Experiment Telescope as a bright gamma ray source, but was not recognized as a pulsar until observations with the Fermi Gamma-ray Space Telescope discovered pulsed gamma ray emission. The pulsar has a helium-dominated companion much less massive than itself, and the two are in an orbit with a period of 93.8 minutes. The system is explained by a model where mass from the low mass companion was transferred on to the pulsar, increasing the mass of the pulsar and decreasing its period. These systems are known as Black Widow Pulsars, named after the original such system discovered, PSR B1957+20, and may eventually lead to the companion being completely vaporized. Among systems like these, the orbital period of PSR J1311–3430 is the shortest ever found. Spectroscopic observations of the companion suggest that the mass of the pulsar is 2.7 . Though there is considerable uncertainty in this estimate, the minimum mass for the pulsar that the authors find adequately fits the data is 2.15 , which is still more massive than PSR J1614−2230, the previous record holder for most massive known pulsar.

<span class="mw-page-title-main">PSR J0348+0432</span> Pulsar–white dwarf binary system in Taurus constellation

PSR J0348+0432 is a pulsar–white dwarf binary system in the constellation Taurus. It was discovered in 2007 with the National Radio Astronomy Observatory's Robert C. Byrd Green Bank Telescope in a drift-scan survey.

In astronomy, the binary mass function or simply mass function is a function that constrains the mass of the unseen component in a single-lined spectroscopic binary star or in a planetary system. It can be calculated from observable quantities only, namely the orbital period of the binary system, and the peak radial velocity of the observed star. The velocity of one binary component and the orbital period provide information on the separation and gravitational force between the two components, and hence on the masses of the components.

<span class="mw-page-title-main">PSR J0740+6620</span> Neutron star

PSR J0740+6620 is a neutron star in a binary system with a white dwarf, located 4,600 light years away in the Milky Way galaxy. It was discovered in 2019, by astronomers using the Green Bank Telescope in West Virginia, U.S., and confirmed as a rapidly rotating millisecond pulsar.

<span class="mw-page-title-main">PSR J0952–0607</span> Massive millisecond pulsar in the Milky Way

PSR J0952–0607 is a massive millisecond pulsar in a binary system, located between 3,200–5,700 light-years (970–1,740 pc) away from Earth in the constellation Sextans. It holds the record for being the most massive neutron star known as of 2022, with a mass 2.35±0.17 times as much as the Sun—potentially close to the Tolman–Oppenheimer–Volkoff mass upper limit for neutron stars. The pulsar rotates at a frequency of 707 Hz, making it the second-fastest-spinning pulsar known, and the fastest-spinning pulsar that is located in the Milky Way.

<span class="mw-page-title-main">Pulsar planet</span> Planets found orbiting pulsars, or rapidly rotating neutron stars

Pulsar planets are planets that are found orbiting pulsars, or rapidly rotating neutron stars. The first such planets to be discovered were around a millisecond pulsar in 1992 and were the first extrasolar planets to be confirmed as discovered. Pulsars are extremely precise clocks and even small planets can create detectable variations in pulsar traits; the smallest known exoplanet is a pulsar planet.

References

  1. Fruchter, A. S.; Stinebring, D. R.; Taylor, J. H. (May 19, 1988). "A millisecond pulsar in an eclipsing binary". Nature . 333 (6170): 237–9. Bibcode:1988Natur.333..237F. doi:10.1038/333237a0. S2CID   4337525.
  2. Swihart, Samuel J.; Strader, Jay; Chomiuk, Laura; Aydi, Elias; Sokolovsky, Kirill V.; Ray, Paul S.; Kerr, Matthew (December 1, 2022). "A New Flaring Black Widow Candidate and Demographics of Black Widow Millisecond Pulsars in the Galactic Field". The Astrophysical Journal. 941 (2): 199. arXiv: 2210.16295 . Bibcode:2022ApJ...941..199S. doi:10.3847/1538-4357/aca2ac. ISSN   0004-637X. S2CID   253224234.
  3. Cassese, Ben (February 17, 2023). "A New Spider Joins a Deadly Club". AAS Nova. Retrieved February 18, 2023.
  4. van Paradijs, J.; Allington-Smith, J.; Callanan, P.; Charles, P. A.; Hassall, B. J. M.; Machin, G.; Mason, K. O.; Naylor, T.; Smale, A. P. (August 1988). "Optical observations of the eclipsing binary radio pulsar PSR1957+20". Nature. 334 (6184): 684–686. Bibcode:1988Natur.334..684V. doi:10.1038/334684a0. S2CID   38016452 . Retrieved March 5, 2022.
  5. Chandra Digest (February 27, 2003). "B1957+20: A Cocoon Found Inside the Black Widow's Web". Chandra X-Ray Observatory. Retrieved June 4, 2022.{{cite web}}: CS1 maint: url-status (link)
  6. Van Kerkwijk, M. H.; Breton, R. P.; Kulkarni, S. R. (2011). "Evidence for a Massive Neutron Star from a Radial-Velocity Study of the Companion to the Black-Widow Pulsar Psr B1957+20". The Astrophysical Journal . 728 (2): 95. arXiv: 1009.5427 . Bibcode:2011ApJ...728...95V. doi:10.1088/0004-637X/728/2/95. S2CID   37759376.
  7. Clark, C. J.; Kerr, M.; Barr, E. D.; Bhattacharyya, B.; Breton, R. P.; Bruel, P.; Camilo, F.; Chen, W.; Cognard, I.; Cromartie, H. T.; Deneva, J.; Dhillon, V. S.; Guillemot, L.; Kennedy, M. R.; Kramer, M. (January 26, 2023). "Neutron star mass estimates from gamma-ray eclipses in spider millisecond pulsar binaries". Nature Astronomy. 7 (4): 451–462. arXiv: 2301.10995 . Bibcode:2023NatAs...7..451C. doi:10.1038/s41550-022-01874-x. ISSN   2397-3366. PMC   10119022 . PMID   37096051. S2CID   256274563.
  8. "Gamma-ray eclipses shed new light on spider pulsars". www.aei.mpg.de. Retrieved January 27, 2023.
  9. "The Extrasolar Planet Encyclopaedia — PSR B1957+20 b". exoplanet.eu. Archived from the original on September 30, 2020. Retrieved January 18, 2021.