Bombus impatiens

Last updated

Bombus impatiens
Bombus impatiens, f, queen, charles co (18239590966).jpg
Queen
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Hymenoptera
Family: Apidae
Genus: Bombus
Subgenus: Pyrobombus
Species:
B. impatiens
Binomial name
Bombus impatiens
Cresson, 1863 [2]
Bombus impatiens distribution.svg
US range of Bombus impatiens

Bombus impatiens, the common eastern bumblebee, is the most commonly encountered bumblebee across much of eastern North America. [3] They can be found in the Eastern temperate forest region of the eastern United States, southern Canada, and the eastern Great Plains. [4] Because of their great adaptability, they can live in country, suburbs, and even urban cities. [5] [ self-published source? ] This adaptability makes them a great pollinator species, leading to an increase in their commercial use by the greenhouse industry. This increase consequently led to their farther spread outside their previous distribution range. [6] They are considered one of the most important species of pollinator bees in North America. [7]

Contents

Taxonomy and phylogeny

In Newark, New Jersey BumbleBee.jpg
In Newark, New Jersey

The generic epithet (the first part of the name) Bombus comes from the genus Bombus , which is also commonly known as bumblebee and belongs to the tribe Bombini . [5] The specific name (the latter half of its scientific name) may come from the flowers of the genus Impatiens, which is one of its food sources. [3]

Including B. impatiens, the genus Bombus contains 250 species and most species are characterized by their eusociality or parasitic nature. [8] Specifically, the genus Bombus has 49 subgenera, [9] and B. impatiens belongs to the subgenus Pyrobombus . [5] B. impatiens is also of the order Hymenoptera and family Apidae which characterizes its kin selection and relatedness.

Description and identification

Queens, workers, and males

The bees of B. impatiens are similar to those of B. bimaculatus , B. perplexus , B. vagans , B. sandersoni , and B. separatus in their appearance. [4] [10] They have short and even hair, medium-sized heads with cheeks that are similar in width to their heads, and a long and rectangular body. [4] In general, queens and workers are similar in their coloring, pubescence, and structure. [6] However, with a body length of 17–23 mm, queens have bigger bodies than males or workers. Workers have bodies that are 8.5–16 mm, and males have bodies that are 12–18 mm long. [4] [6] The differences in their sizes can be observed by the differences in their larval weight at second instar. [8] In addition to the difference in their sizes, males slightly differ in their coloring. While queens and workers are both black with a yellow thorax and first abdominal segment, males have a yellow face and head. [10]

Nests

B. impatiens have underground nests that are 1–3 feet below the ground surface. They enter their nests using tunnels that are 18 inches to 9 feet long. [10] Unlike the nests of honeybees or paper wasps, the nests of B. impatiens do not have a predictable pattern. The bees lay egg clumps all over inside the nest instead of having one brood area around which the workers' distribution center is arranged. [11]

Within the nest there is a special division of labor and social organization. [12] 11–13% of workers maintain small spatial fidelity zones inside the nest, and all workers remain at a specific distance from the colony center. [12] Smaller individuals maintained smaller spatial zones and tended to be closer to the center of the nest. Individuals that perform the in-nest task of larval feeding were found in the center of the nest, while foragers were often found on the periphery of the nest when not foraging. [12]

Distribution and habitat

Broadly, they can be found in the Eastern temperate forest region of the eastern United States, southern Canada, and the eastern Great Plains. [4] More specifically, its range includes Ontario, the New England States, Georgia, Mississippi, Kentucky, Tennessee, Alabama, Maryland, Delaware, New Jersey, New York, Pennsylvania, South Carolina, North Carolina, Virginia, West Virginia, south to Florida, west to Michigan, Illinois, Minnesota, Kansas, Missouri, and Iowa. [13] Also, the increase in their commercial use by greenhouse industry led to the spread of the species outside its previous distribution range. [6] Bombus impatiens adapts well to a variety of habitats, nectar sources, and climates and was seen visiting a variety and abundance of plants. In addition to agricultural, wetland, and urban conditions, the species can thrive in wooded habitats, and is likely related to woodland spring ephemerals. It nests underground in open fields and woods. [14]

Colony

To start colonies, the gynes usually leave their hibernacula starting in mid-April and establish colonies in May. In the beginning of June, the workers start to emerge and in August and September the male bees and young queens start appearing. However, at times, the bees can emerge around late to mid-October. [10] In terms of colony sizes, a colony of B. impatiens consists of more than 450 individual bees [15] and most are worker bees. [8]

Behavior

Division of labor

Inside the nest, the worker bees distribute themselves in a non-random fashion to be a certain distance away from the center of the nest. By doing so they increase their efficiency, as the distance traveled between tasks is minimized. The tasks of some workers are related to their space in the nest. The labor for the workers is divided according to their body sizes. They vary in size, and the smaller bees are usually found near the center of the nest with the job of feeding the larvae whereas the bigger workers are usually found at the periphery, working as foragers and as guards. In general, they keep their spatial pattern as well as their jobs throughout their lifetime. [11]

Reproductive suppression

Worker bees are totipotent and have the ability to lay eggs, and a few workers even have mature oocytes in their ovaries. However, when there is a queen in the colony, the workers do not attempt to lay eggs or develop eggs. They usually do not show aggression towards other workers or the queen, showing no "competition phase." Without a queen, aggression is more common. [8]

Mating

Queen and drone mating Common Eastern Bumble Bees on Jerusalem Artichoke.jpg
Queen and drone mating

A gyne mates with a male bee near the end of the hive's life cycle. They rest on the ground or on vegetation in order to mate and the mating lasts from 10 to 80 minutes. In order to increase the probability of his genes getting passed down safely, the male mates for a certain amount of time to let his sperm harden during mating. Soon thereafter the gynes hibernate. The following spring they emerge from hibernation and set about to get strong on nectar and to find a suitable old mouse or chipmunk hole to begin a colony. The first thing she builds is a honeypot, then she fills it with food (nectar/pollen), making it easier to feed her new brood, which are raised in paper cells she builds. The queens lay about 2000 eggs in one season, but only half of them will survive to become full adults. [5]

Foraging

Traplining

Foragers of B. impatiens colonies use a strategy called traplining, in which the bees visit their food sources in a repeatable sequence, to improve their efficiency, especially in an unfamiliar environment. [16] The bees establish traplines by searching among flowers in an orderly manner. Upon establishment, the traplines remain stable for long periods of time. [17] Traplining has many advantages. The bees can minimize both the distance traveled by linking the sources in a more direct path and the time spent searching by knowing the locations of food sources. [18] Also, the bees can travel through the locations that were recently depleted of their resources, saving their energy and time. [16]

Communication

B. impatiens use communication in order to maximize the benefit of foraging. The bees become faster and more accurate as they become more experienced at foraging, [19] [20] and the returning foragers tend to stimulate the foraging activity of the colony. [21] The foragers of B. impatiens improve their foraging activity by communicating with others in their nests. They share their abilities to associate scents of good food sources. [16]

Interaction with other species

Diet

There are many food plants for B. impatiens including: " Aster ", Cirsium, Eupatorium, Gelsemium, Malus, Pontederia, Rubus, Solidago, Trifolium, Crocus, Pieris, Rhododendron, barberry, mountain laurel, rose, clover, purple vetch, pickerel weed, purple loosestrife, buttonbush, beggar's ticks, goldenrod, boneset, burdock, and Impatiens from which the bee's name may come. [4] [10] The bees can eat the raw materials like pollen and nectar of the flowers but most bees in the colony eat honey that is made using the raw materials since it has higher nutritional value. To create honey, the bees consume the pollen and the nectar, and then regurgitate them, mixing them with enzymes in their stomachs. [5]

Parasites

Bombus impatiens are hosts to other bees. Ps. Laborious and Bombus citrinus are some examples of parasites. [10] Also, Entromopox-like viruses and prokaryotes called Spiroplasmataceae have been found in the workers. However, there is no known harmful effect to B. impatiens. [22] [23]

Importance to humans

Bees play in a significant role in pollinating crops. A decline in bee population leads to a decline in crop yield, which will then result in a reduction in the food supply and cause economic hardships for farmers. [24] [25] Commercially produced B. impatiens is one of the most important species of pollinator bees that are used by greenhouse industry in North America, [7] including Canada and Mexico. [26] They are efficient pollinators and natives to East North America. [7] The interest in B. impatiens has been increased even more due to the decline of pollinator bee population like A. mellifera [27] and the ban on importing B. terrestris into North America. [28] They are used as pollinator bees for tomatoes, blueberries, raspberries, and pumpkins. [27] [28]

Related Research Articles

<span class="mw-page-title-main">Bumblebee</span> Genus of insect

A bumblebee is any of over 250 species in the genus Bombus, part of Apidae, one of the bee families. This genus is the only extant group in the tribe Bombini, though a few extinct related genera are known from fossils. They are found primarily in higher altitudes or latitudes in the Northern Hemisphere, although they are also found in South America, where a few lowland tropical species have been identified. European bumblebees have also been introduced to New Zealand and Tasmania. Female bumblebees can sting repeatedly, but generally ignore humans and other animals.

<i>Bombus terrestris</i> Species of bee

Bombus terrestris, the buff-tailed bumblebee or large earth bumblebee, is one of the most numerous bumblebee species in Europe. It is one of the main species used in greenhouse pollination, and so can be found in many countries and areas where it is not native, such as Tasmania. Moreover, it is a eusocial insect with an overlap of generations, a division of labour, and cooperative brood care. The queen is monogamous which means she mates with only one male. B. terrestris workers learn flower colours and forage efficiently.

<span class="mw-page-title-main">Early bumblebee</span> Species of bee

The early bumblebee or early-nesting bumblebee is a small bumblebee with a wide distribution in most of Europe and parts of Asia. It is very commonly found in the UK and emerges to begin its colony cycle as soon as February which is earlier than most other species, hence its common name. There is even some evidence that the early bumblebee may be able to go through two colony cycles in a year. Like other bumblebees, Bombus pratorum lives in colonies with queen and worker castes. Bombus pratorum queens use aggressive behavior rather than pheromones to maintain dominance over the workers.

<span class="mw-page-title-main">Trap-lining</span> Feeding strategy amongst certain families of birds

In ethology and behavioral ecology, trap-lining or traplining is a feeding strategy in which an individual visits food sources on a regular, repeatable sequence, much as trappers check their lines of traps. Traplining is usually seen in species foraging for floral resources. This involves a specified route in which the individual traverses in the same order repeatedly to check specific plants for flowers that hold nectar, even over long distances. Trap-lining has been described in several taxa, including bees, butterflies, tamarins, bats, rats, and hummingbirds and tropical fruit-eating mammals such as opossums, capuchins and kinkajous. Traplining is used to term the method in which bumblebees and hummingbirds go about collecting nectar, and consequently, pollinating each plant they visit. The term "traplining" was originally coined by Daniel Janzen, although the concept was discussed by Charles Darwin and Nikolaas Tinbergen.

<i>Bombus lapidarius</i> Species of bee

Bombus lapidarius is a species of bumblebee in the subgenus Melanobombus. Commonly known as the red-tailed bumblebee, B. lapidarius can be found throughout much of Central Europe. Known for its distinctive black and red body, this social bee is important in pollination.

<i>Bombus polaris</i> Species of bee

Bombus polaris is a common Arctic bumblebee species. B. polaris is one of two bumblebees that live above the Arctic Circle. The other is its social parasite Bombus hyperboreus. B. polaris is a social bee that can survive at near freezing temperatures. It has developed multiple adaptations to live in such cold temperatures. B. polaris has a thicker coat of hair than most bees, utilizes thermoregulation, and makes insulated nests.

<i>Bombus hortorum</i> Species of bee

Bombus hortorum, the garden bumblebee or small garden bumblebee, is a species of bumblebee found in most of Europe north to 70°N, as well as parts of Asia and New Zealand. It is distinguished from most other bumblebees by its long tongue used for feeding on pollen in deep-flowered plants. Accordingly, this bumblebee mainly visits flowers with deep corollae, such as deadnettles, ground ivy, vetches, clovers, comfrey, foxglove, and thistles. They have a good visual memory, which aids them in navigating the territory close to their habitat and seeking out food sources.

<i>Bombus pensylvanicus</i> Species of bee

Bombus pensylvanicus, the American bumblebee, is a threatened species of bumblebee native to North America. It occurs in eastern Canada, throughout much of the Eastern United States, and much of Mexico.

Two-spotted bumble bee Species of bee

The two-spotted bumble bee is a species of social bumble bee found in the eastern half of the United States and the adjacent south-eastern part of Canada. In older literature this bee is often referred to as Bremus bimaculatus, Bremus being a synonym for Bombus. The bee's common name comes from the two yellow spots on its abdomen. Unlike many of the other species of bee in the genus Bombus,B. bimaculatus is not on the decline, but instead is very stable. They are abundant pollinators that forage at a variety of plants.

<i>Bombus vosnesenskii</i> Species of bee

Bombus vosnesenskii, the yellow-faced bumblebee, is a species of bumblebee native to the west coast of North America, where it is distributed from British Columbia to Baja California. It is the most abundant species of bee in this range, and can be found in both urban and agricultural areas. Additionally, B. vosnesenskii is utilized as an important pollinator in commercial agriculture, especially for greenhouse tomatoes. Though the species is not currently experiencing population decline, urbanization has affected its nesting densities, and early emergence of the B. vosnesenskii has been implicated in the increasing lack of bee diversity on the West coast.

<i>Bombus occidentalis</i> Species of bee

Bombus occidentalis, the western bumblebee, is one of around 30 bumblebee species present in the western United States and western Canada. A recent review of all of its close relatives worldwide appears to have confirmed its status as a separate species.

<i>Bombus fervidus</i> Species of bee

Bombus fervidus, the golden northern bumble bee or yellow bumblebee, is a species of bumblebee native to North America. It has a yellow-colored abdomen and thorax. Its range includes the North American continent, excluding much of the southern United States, Alaska, and the northern parts of Canada. It is common in cities and farmland, with populations concentrated in the Northeastern part of the United States. It is similar in color and range to its sibling species, Bombus californicus, though sometimes also confused with the American bumblebee or black and gold bumblebee. It has complex behavioral traits, which includes a coordinated nest defense to ward off predators. B. fervidus is an important pollinator, so recent population decline is a particular concern.

<span class="mw-page-title-main">Bumblebee communication</span>

Bumblebees, like the honeybee collect nectar and pollen from flowers and store them for food. Many individuals must be recruited to forage for food to provide for the hive. Some bee species have highly developed ways of communicating with each other about the location and quality of food resources ranging from physical to chemical displays.

<i>Bombus dahlbomii</i> Species of bee

Bombus dahlbomii, also known as the moscardón, is a species of bumblebee endemic to southern South American temperate forests. B. dahlbomii is one of the largest bee species in the world, with matured queens growing up to 40 mm (1.6 in) long. Because of its size and furry appearance, the species has been described as "flying mice" colloquially, and "a monstrous fluffy ginger beast" by British ecologist David Goulson.

<i>Bombus terricola</i> Species of bee

Bombus terricola, the yellow-banded bumblebee, is a species of bee in the genus Bombus. It is native to southern Canada and the east and midwest of the United States. It possesses complex behavioral traits, such as the ability to adapt to a queenless nest, choose which flower to visit, and regulate its temperature to fly during cold weather. It was at one time a common species, but has declined in numbers since the late 1990s, likely due to urban development and parasite infection. It is a good pollinator of wild flowers and crops such as alfalfa, potatoes, raspberries, and cranberries.

Apicystis bombi is a species of parasitic alveolates in the phylum Apicomplexa. It infects bees, especially bumblebees. It is believed to have a cosmopolitan distribution in bumblebees and a sporadic occurrence in honey bees, and causes disease symptoms in nonresistant bee species.

<i>Bombus vagans</i> Species of bee

The half-black bumblebee is a small bumblebee with a wide distribution in North America, its range extending from Ontario to Nova Scotia and southward to Georgia.

<i>Bombus pauloensis</i> Species of bee

Bombus pauloensis is a neotropical bumblebee, formerly known as Bombus atratus, that is found throughout regions of South America, including Colombia, Ecuador, Brazil, and Argentina. It lives in social colonies that include a founder queen/queens, workers and brood. B. pauloensis is somewhat unusual because of its potential to oscillate between polygynous and monogynous nesting cycles. Bombus pauloensis was the first species in the genus Bombus that was discovered to display such polygynous nesting patterns. The polygynous nesting cycles lead to certain specific types of behavior including queen-queen aggression. Nests can also be perennial, which is a characteristic rarely found in other bumblebees. B. pauloensis can be helpful to agricultural because of their ability to pollinate different species of plants. B. pauloensis has been found to occupy a range of geographic areas and climates throughout South America. Colonies have the ability to thermoregulate nests and keep them a little bit warmer than the outside environment. Foraging workers use muscle contractions to maintain stable temperatures and coupe with seasonal and daily fluctuations in temperature.

<i>Bombus transversalis</i> Species of bee

Bombus transversalis is a bumblebee specifically native to the Amazon Basin. It is most notable for its surface level colonies which are built by the workers on the rainforest floor. Unlike its relatives, B. transversalis is able to thrive in a humid climate and fend off a wide range of predators because of its resilient nests. While there is great deal of information pertaining to their nests and foraging abilities, there is much more to be learned about relationships within the colony and life cycle of the bee.

<i>Bombus vancouverensis</i> Species of bee

Bombus vancouverensis, the Vancouver Island Bumblebee, is a common species of eusocial bumblebee of the subgenus Pyrobombus. B. vancouverensis inhabits mountainous regions of western North America, where it has long been considered as a synonym of Bombus bifarius, and essentially all of the literature on bifarius refers instead to vancouverensis. B. vancouverensis has been identified as one of the two species of bumblebee observed to use pheromones in kin recognition. The other is the frigid bumblebee, Bombus frigidus.

References

  1. Hatfield, R.; Jepsen, S.; Thorp, R.; Richardson, L.; Colla, S. (2014). "Bombus impatiens". IUCN Red List of Threatened Species . 2014: e.T44937797A69003246. doi: 10.2305/IUCN.UK.2014-3.RLTS.T44937797A69003246.en . Retrieved 19 November 2021.
  2. "Bombus impatiens". Integrated Taxonomic Information System.
  3. 1 2 "Species Bombus impatiens – Common Eastern Bumble Bee". bugguide.net. Retrieved October 2, 2011.
  4. 1 2 3 4 5 6 Williams, Paul H.; Thorp, Robbin W.; Richardson, Leif L.; Colla, Sheila R. (2014). Bumble Bees of North America: An Identification Guide. Princeton University Press. ISBN   978-1-4008-5118-8.[ page needed ]
  5. 1 2 3 4 5 "DigitalInsectCollection – Eastern Bumblebee". digitalinsectcollection.wikispaces.com. Archived from the original on 2015-10-05. Retrieved 2015-09-26.
  6. 1 2 3 4 "Bombus impatiens - -- Discover Life". www.discoverlife.org. Retrieved 2015-09-26.
  7. 1 2 3 Sachman-Ruiz, Bernardo; Narváez-Padilla, Verónica; Reynaud, Enrique (2015). "Commercial Bombus impatiens as reservoirs of emerging infectious diseases in central México". Biological Invasions. 17 (7): 2043–2053. doi: 10.1007/s10530-015-0859-6 .
  8. 1 2 3 4 Cnaani, J.; Schmid-Hempel, R.; Schmidt, J.O. (1 May 2002). "Colony development, larval development and worker reproduction in Bombus impatiens Cresson". Insectes Sociaux. 49 (2): 164–170. doi:10.1007/s00040-002-8297-8. S2CID   2636697.
  9. Williams, Paul H.; Cameron, Sydney A.; Hines, Heather M.; Cederberg, Bjorn; Rasmont, Pierre (2008). "A simplified subgeneric classification of the bumblebees (genus Bombus)". Apidologie. 39 (1): 46–74. doi:10.1051/apido:2007052. S2CID   3489618.
  10. 1 2 3 4 5 6 Plath, O. E (1934). Bumblebees and their ways. Macmillan. ASIN   B0006AMENA. OCLC   595908093.[ page needed ]
  11. 1 2 Jandt, Jennifer M.; Dornhaus, Anna (2009-03-01). "Spatial organization and division of labour in the bumblebee Bombus impatiens". Animal Behaviour. 77 (3): 641–651. doi:10.1016/j.anbehav.2008.11.019. S2CID   378281.
  12. 1 2 3 Jandt, Jennifer M.; Dornhaus, Anna (2009-03-01). "Spatial organization and division of labour in the bumblebee Bombus impatiens". Animal Behaviour. 77 (3): 641–651. doi:10.1016/j.anbehav.2008.11.019. S2CID   378281.
  13. "North American bumblebees". Bumblebees.org. Retrieved October 2, 2011.
  14. Hatfield, R.; Jepsen, S.; Thorp, R.; Richardson, L.; Colla, S. (2014). "Bombus impatiens". IUCN Red List of Threatened Species . 2014: e.T44937797A69003246. doi: 10.2305/IUCN.UK.2014-3.RLTS.T44937797A69003246.en . Retrieved 17 April 2021.
  15. Michener, Charles Duncan (1974-01-01). The Social Behavior of the Bees: A Comparative Study. Harvard University Press. ISBN   978-0-674-81175-1.
  16. 1 2 3 Saleh, Nehal; Chittka, Lars (16 March 2007). "Traplining in bumblebees (Bombus impatiens): a foraging strategy's ontogeny and the importance of spatial reference memory in short-range foraging". Oecologia. 151 (4): 719–730. Bibcode:2007Oecol.151..719S. doi:10.1007/s00442-006-0607-9. PMID   17136553. S2CID   1943118.
  17. Thomson, James D. (1 July 1996). "Trapline foraging by bumblebees: I. Persistence of flight-path geometry". Behavioral Ecology. 7 (2): 158–164. CiteSeerX   10.1.1.578.8776 . doi:10.1093/beheco/7.2.158. NAID   30024993987.
  18. Williams, N (1 November 1998). "Trapline foraging by bumble bees: III. Temporal patterns of visitation and foraging success at single plants". Behavioral Ecology. 9 (6): 612–621. doi: 10.1093/beheco/9.6.612 .
  19. Ohashi, Kazuharu; Leslie, Alison; Thomson, James D. (1 September 2008). "Trapline foraging by bumble bees: V. Effects of experience and priority on competitive performance". Behavioral Ecology. 19 (5): 936–948. doi: 10.1093/beheco/arn048 .
  20. Laverty, Terence M. (1994). "Bumble bee learning and flower morphology". Animal Behaviour. 47 (3): 531–545. doi:10.1006/anbe.1994.1077. S2CID   53174725.
  21. Dornhaus, Anna; Chittka, Lars (2004). "Information flow and regulation of foraging activity in bumble bees (Bombus spp.)". Apidologie. 35 (2): 183–192. doi: 10.1051/apido:2004002 .
  22. Clark, Truman B. (1982). "Entomopoxvirus-like particles in three species of bumblebees". Journal of Invertebrate Pathology. 39 (1): 119–122. doi:10.1016/0022-2011(82)90168-9.
  23. Clark, T. B.; Whitcomb, R. F.; Tully, J. G.; Mouches, C.; Saillard, C.; BOVe, J. M.; Wroblewski, H.; Carle, P.; Rose, D. L.; Henegar, R. B.; Williamson, D. L. (1 July 1985). "Spiroplasma melliferum, a New Species from the Honeybee (Apis mellifera)". International Journal of Systematic Bacteriology. 35 (3): 296–308. doi: 10.1099/00207713-35-3-296 .
  24. Allen-Wardell, Gordon; Bernhardt, Peter; Bitner, Ron; Burquez, Alberto; Buchmann, Stephen; Cane, James; Cox, Paul Allen; Dalton, Virginia; Feinsinger, Peter; Ingram, Mrill; Inouye, David; Jones, C. Eugene; Kennedy, Kathryn; Kevan, Peter; Koopowitz, Harold; Medellin, Rodrigo; Medellin-Morales, Sergio; Nabhan, Gary Paul; Pavlik, Bruce; Tepedino, Vincent; Torchio, Phillip; Walker, Steve (1998). "The Potential Consequences of Pollinator Declines on the Conservation of Biodiversity and Stability of Food Crop Yields". Conservation Biology. 12 (1): 8–17. doi:10.1111/j.1523-1739.1998.97154.x. JSTOR   2387457.
  25. Eilers, Elisabeth J.; Kremen, Claire; Smith Greenleaf, Sarah; Garber, Andrea K.; Klein, Alexandra-Maria (22 June 2011). "Contribution of Pollinator-Mediated Crops to Nutrients in the Human Food Supply". PLOS ONE. 6 (6): e21363. Bibcode:2011PLoSO...621363E. doi: 10.1371/journal.pone.0021363 . PMC   3120884 . PMID   21731717.
  26. Velthuis, Hayo H. W.; Doorn, Adriaan van (1 July 2006). "A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination". Apidologie. 37 (4): 421–451. doi: 10.1051/apido:2006019 .
  27. 1 2 Petersen, Jessica D.; Reiners, Stephen; Nault, Brian A. (24 July 2013). "Pollination Services Provided by Bees in Pumpkin Fields Supplemented with Either Apis mellifera or Bombus impatiens or Not Supplemented". PLOS ONE. 8 (7): e69819. Bibcode:2013PLoSO...869819P. doi: 10.1371/journal.pone.0069819 . PMC   3722171 . PMID   23894544.
  28. 1 2 Goulson, Dave (2010). Bumblebees: Behaviour, Ecology, and Conservation. OUP Oxford. ISBN   978-0-19-955306-8.[ page needed ]

Further reading