Brillouin spectroscopy

Last updated

Brillouin spectroscopy is an empirical spectroscopy technique which allows the determination of elastic moduli of materials. The technique uses inelastic scattering of light when it encounters acoustic phonons in a crystal, a process known as Brillouin scattering, to determine phonon energies and therefore interatomic potentials of a material. [1] The scattering occurs when an electromagnetic wave interacts with a density wave, photon-phonon scattering.

Contents

This technique is commonly used to determine the elastic properties of materials in mineral physics and material science. Brillouin spectroscopy can be used to determine the complete elastic tensor of a given material which is required in order to understand the bulk elastic properties.

Comparison with Raman spectroscopy

An illustration of an example Brillouin and Raman spectrum. In practice the distinction between Brillouin and Raman spectroscopy depends on which frequencies we choose to sample. Brillouin scattering generally lies within the GHz frequency regime. Spectroscopy.jpg
An illustration of an example Brillouin and Raman spectrum. In practice the distinction between Brillouin and Raman spectroscopy depends on which frequencies we choose to sample. Brillouin scattering generally lies within the GHz frequency regime.

Brillouin spectroscopy is similar to Raman spectroscopy in many ways; in fact the physical scattering processes involved are identical. However, the type of information gained is significantly different. The process observed in Raman spectroscopy, Raman scattering, primarily involves high frequency molecular vibrational modes. Information relating to modes of vibration, such as the six normal modes of vibration of the carbonate ion, (CO3)2−, can be obtained through a Raman spectroscopy study shedding light on structure and chemical composition, [2] whereas Brillouin scattering involves the scattering of photons by low frequency phonons providing information regarding elastic properties. [3] Optical phonons and molecular vibrations measured in Raman spectroscopy typically have wavenumbers between 10 and 4000 cm−1, while phonons involved in Brillouin scattering are on the order of 0.1–6 cm−1. This roughly two order of magnitude difference becomes obvious when attempting to perform Raman spectroscopy vs. Brillouin spectroscopy experiments.

In Brillouin scattering, and similarly Raman scattering, both energy and momentum are conserved in the relations: [1]

Where ω and k are the angular frequency and wavevector of the photon, respectively. While the phonon angular frequency and wavevector are Ω and q. The subscripts i and s denote the incident and scattered waves. The first equation is the result of the application of the conservation of energy to the system of the incident photon, the scattered photon, and the interacting phonon. Applying conservation of energy also sheds light upon the frequency regime in which Brillouin scattering occurs. The energy imparted on an incident photon from a phonon is relatively small, generally around 5-10% that of the photon's energy.[ clarification needed ] [4] Given an approximate frequency of visible light, ~1014 Hz, it is easy to see that Brillouin scattering generally lies in the GHz regime.[ citation needed ]

The second equation describes the application of conservation of momentum to the system. [1] The phonon, which is either generated or annihilated, has a wavevector which is a linear combination of the incident and scattered wavevectors. This orientation will become more apparent and important when the orientation of the experimental setup is discussed.

Geometric relationships between longitudinal, L, and transverse, T, acoustic waves. Wave Polarization.jpg
Geometric relationships between longitudinal, L, and transverse, T, acoustic waves.

The equations describe both the constructive (Stokes) and destructive (anti-Stokes) interactions between a photon and phonon. Stokes scattering describes the interaction scenario in which the material absorbs the photon, creating a phonon, inelastically emitting a photon with a lower energy than that of the absorbed photon. Anti-Stokes scattering describes the interaction scenario in which the incoming photon absorbs a phonon, phonon annihilation, and a photon with a higher energy than that of absorbed photon is emitted. The figure illustrates the differences between Raman scattering and Brillouin scattering along with Stokes and anti-Stokes interactions as is seen in experimental data.

The figure depicts three important details. The first is the Rayleigh line, the peak which has been suppressed at 0 cm−1. This peak is a result of Rayleigh scattering, a form of elastic scattering from the incident photons and the sample. Rayleigh scattering occurs when the induced polarization of the atoms, resulting from the incident photons, does not couple with possible vibrational modes of the atoms. The resulting emitted radiation has the same energy as the incident radiation, meaning no frequency shift is observed. This peak is generally quite intense and is not of direct interest for Brillouin spectroscopy. In an experiment, the incident light is most often a high power laser. This results in a very intense Rayleigh peak which has the ability to wash out the Brillouin peaks of interest. In order to adjust for this, most spectrum are plotted with the Rayleigh peak either filtered out or suppressed.

The second noteworthy aspect of the figure is the distinction between Brillouin and Raman peaks. As previously mentioned, Brillouin peaks range from 0.1 cm−1 to approximately 6 cm−1 while Raman scattering wavenumbers ranges from 10–10000 cm−1. [1] As Brillouin and Raman spectroscopy probe two fundamentally different interaction regimes this is not too large of an inconvenience. The fact that Brillouin interactions are such low frequency however creates technical challenges when performing experiments for which a Fabry-Perot interferometer are usually used in order to overcome. A Raman spectroscopy system is generally less technically complicated and can be performed with a diffraction grating–based spectrometer.[ citation needed ] In some cases a single grating–based spectrometer has been used to collect both Brillouin and Raman spectra from a sample. [5]

The figure also highlights the difference between Stokes and anti-Stokes scattering. Stokes scattering, positive photon creation, is displayed as a positive shift in wavenumber. Anti-Stokes scattering, negative photon annihilation, is displayed as a negative shift in wavenumber. The locations of peaks are symmetric about the Rayleigh line because they correspond to the same energy level transition but of a different sign. [4]

In practice, six Brillouin lines of interest are generally seen in a Brillouin spectrum. Acoustic waves have three polarization directions one longitudinal and two transverse directions each being orthogonal to the others. Solids can be considered nearly incompressible, within an appropriate pressure regime, as a result, longitudinal waves, which are transmitted via compression parallel to the propagation direction, can transmit their energy through the material easily and thus travel quickly. The motion of transverse waves, on the other hand, is perpendicular to the propagation direction and is thus less easily propagated through the medium. As a result, longitudinal waves travel more quickly through solids than transverse waves. An example of this can be seen in quartz with an approximate acoustic longitudinal wave velocity of 5965 m/s and transverse wave velocity of 3750 m/s. Fluids cannot support transverse waves. As a result, transverse wave signals are not found in Brillouin spectra of fluids. The equation shows the relationship between acoustic wave velocity, V, angular frequency Ω, and phonon wavenumber, q. [1]

According to the equation, acoustic waves with varying speeds will appear on the Brillouin spectra with varying wavenumbers: faster waves with higher magnitude wavenumbers and slower waves with smaller wavenumbers. Therefore, three distinct Brillouin lines will be observable. In isotropic solids, the two transverse waves will be degenerate, as they will be traveling along elastically identical crystallographic planes. In non-isotropic solids the two transverse waves will be distinguishable from one another, but not distinguishable as being horizontally or vertically polarized without a deeper understanding of the material being studied. They are then generically labeled transverse 1 and transverse 2.

Applications

Cubic elastic tensor after symmetry reduction. Cubic elastic constants..JPG
Cubic elastic tensor after symmetry reduction.

Brillouin spectroscopy is a valuable tool for determining the complete elastic tensor, , of solids. The elastic tensor is an 81 component 3x3x3x3 matrix which, through Hooke's Law, relates stress and strain within a given material. The number of independent elastic constants found within the elastic tensor can be reduced through symmetry operations and depends on the symmetry of a given material ranging from 2 for non-crystalline substances or 3 for cubic crystals to 21 for systems with triclinic symmetry. The tensor is unique to given materials and thus must be independently determined for each material in order to understand their elastic properties. The elastic tensor is especially important to mineral physicist and seismologists looking to understand the bulk, polycrystalline, properties of deep Earth minerals.[ citation needed ] It is possible to determine elastic properties of materials such as the adiabatic bulk modulus, , without first finding the complete elastic tensor through techniques such as the determination of an equation of state through a compression study. Elastic properties found in this way, however, do not scale well to bulk systems such as those found within rock assemblages in the Earth's mantle. In order to calculate the elastic properties of bulk material with randomly oriented crystals the elastic tensor is needed.

Using Equation 3, it is possible to determine the sound velocity through a material. In order to obtain the elastic tensor the Christoffel Equation needs to be applied:

The Christoffel Equation is essentially an eigenvalue problem which relates the elastic tensor, , to the crystal orientation and the orientation of the incident light, , to a matrix, , whose eigenvalues are equal to ρV2, where ρ is density and V is acoustic velocity. The polarization matrix, , contains the corresponding polarizations of the propagating waves.[ citation needed ]

Relationships between elastic constants and X for cubic systems depending upon the direction of propagation of the phonon, q, and the eigenvector of the phonon, U, where L = longitudinal and T = transverse acoustic waves. Cubic Elastic Constants.JPG
Relationships between elastic constants and X for cubic systems depending upon the direction of propagation of the phonon, q, and the eigenvector of the phonon, U, where L = longitudinal and T = transverse acoustic waves.

Using the equation, where and are known from the experimental setup and V is determined from the Brillouin spectra, it is possible to determine , given the density of the material.

For specific symmetries the relationship between a specific combination of elastic constants, X, and acoustic wave velocities, ρV2, have been determined and tabulated. [7] For example, in a cubic system reduces to 3 independent components. Equation 5 shows the complete elastic tensor for a cubic material. [6] The relations between the elastic constants and can be found in Table 1.

In a cubic material it is possible to determine the complete elastic tensor from pure longitudinal and pure transverse phonon velocities. In order make the above calculations the phonon wavevector, q, must be pre-determined from the geometry of the experiment. There are three main Brillouin spectroscopy geometries: 90 degree scattering, backscattering, and platelet geometry.[ citation needed ]

Frequency shift

The frequency shift of the incident laser light due to Brillouin scattering is given by [8]

where is the angular frequency of the light, is the velocity of acoustic waves (speed of sound in the medium), is the index of refraction, is the vacuum speed of light, and is the angle of incidence of the light.

See also

Related Research Articles

<span class="mw-page-title-main">Group velocity</span> Physical quantity

The group velocity of a wave is the velocity with which the overall envelope shape of the wave's amplitudes—known as the modulation or envelope of the wave—propagates through space.

<span class="mw-page-title-main">Raman spectroscopy</span> Spectroscopic technique

Raman spectroscopy is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman spectroscopy is commonly used in chemistry to provide a structural fingerprint by which molecules can be identified.

In physics, a phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phonon is an excited state in the quantum mechanical quantization of the modes of vibrations for elastic structures of interacting particles. Phonons can be thought of as quantized sound waves, similar to photons as quantized light waves.

<span class="mw-page-title-main">Longitudinal wave</span> Waves in which the direction of media displacement is parallel (along) to the direction of travel

Longitudinal waves are waves in which the vibration of the medium is parallel to the direction the wave travels and displacement of the medium is in the same direction of the wave propagation. Mechanical longitudinal waves are also called compressional or compression waves, because they produce compression and rarefaction when traveling through a medium, and pressure waves, because they produce increases and decreases in pressure. A wave along the length of a stretched Slinky toy, where the distance between coils increases and decreases, is a good visualization. Real-world examples include sound waves and seismic P-waves.

<span class="mw-page-title-main">Wavenumber</span> Spatial frequency of a wave

In the physical sciences, the wavenumber, also known as repetency, is the spatial frequency of a wave, measured in cycles per unit distance or radians per unit distance. It is analogous to temporal frequency, which is defined as the number of wave cycles per unit time or radians per unit time.

In electromagnetism, Brillouin scattering, named after Léon Brillouin, refers to the interaction of light with the material waves in a medium. It is mediated by the refractive index dependence on the material properties of the medium; as described in optics, the index of refraction of a transparent material changes under deformation.

<span class="mw-page-title-main">Raman scattering</span> Inelastic scattering of photons by matter

In physics, Raman scattering or the Raman effect is the inelastic scattering of photons by matter, meaning that there is both an exchange of energy and a change in the light's direction. Typically this effect involves vibrational energy being gained by a molecule as incident photons from a visible laser are shifted to lower energy. This is called normal Stokes-Raman scattering.

In physics, a wave vector is a vector used in describing a wave, with a typical unit being cycle per metre. It has a magnitude and direction. Its magnitude is the wavenumber of the wave, and its direction is perpendicular to the wavefront. In isotropic media, this is also the direction of wave propagation.

<span class="mw-page-title-main">Dispersion relation</span> Relation of wavelength/wavenumber as a function of a waves frequency

In the physical sciences and electrical engineering, dispersion relations describe the effect of dispersion on the properties of waves in a medium. A dispersion relation relates the wavelength or wavenumber of a wave to its frequency. Given the dispersion relation, one can calculate the frequency-dependent phase velocity and group velocity of each sinusoidal component of a wave in the medium, as a function of frequency. In addition to the geometry-dependent and material-dependent dispersion relations, the overarching Kramers–Kronig relations describe the frequency-dependence of wave propagation and attenuation.

In condensed matter physics, a spin wave is a propagating disturbance in the ordering of a magnetic material. These low-lying collective excitations occur in magnetic lattices with continuous symmetry. From the equivalent quasiparticle point of view, spin waves are known as magnons, which are bosonic modes of the spin lattice that correspond roughly to the phonon excitations of the nuclear lattice. As temperature is increased, the thermal excitation of spin waves reduces a ferromagnet's spontaneous magnetization. The energies of spin waves are typically only μeV in keeping with typical Curie points at room temperature and below.

Acoustic waves are a type of energy propagation through a medium by means of adiabatic loading and unloading. Important quantities for describing acoustic waves are acoustic pressure, particle velocity, particle displacement and acoustic intensity. Acoustic waves travel with a characteristic acoustic velocity that depends on the medium they're passing through. Some examples of acoustic waves are audible sound from a speaker, seismic waves, or ultrasound used for medical imaging.

<span class="mw-page-title-main">Surface phonon</span>

In solid state physics, a surface phonon is the quantum of a lattice vibration mode associated with a solid surface. Similar to the ordinary lattice vibrations in a bulk solid, the nature of surface vibrations depends on details of periodicity and symmetry of a crystal structure. Surface vibrations are however distinct from the bulk vibrations, as they arise from the abrupt termination of a crystal structure at the surface of a solid. Knowledge of surface phonon dispersion gives important information related to the amount of surface relaxation, the existence and distance between an adsorbate and the surface, and information regarding presence, quantity, and type of defects existing on the surface.

<span class="mw-page-title-main">Lamb waves</span>

Lamb waves propagate in solid plates or spheres. They are elastic waves whose particle motion lies in the plane that contains the direction of wave propagation and the direction perpendicular to the plate. In 1917, the English mathematician Horace Lamb published his classic analysis and description of acoustic waves of this type. Their properties turned out to be quite complex. An infinite medium supports just two wave modes traveling at unique velocities; but plates support two infinite sets of Lamb wave modes, whose velocities depend on the relationship between wavelength and plate thickness.

Interfacial thermal resistance, also known as thermal boundary resistance, or Kapitza resistance, is a measure of resistance to thermal flow at the interface between two materials. While these terms may be used interchangeably, Kapitza resistance technically refers to an atomically perfect, flat interface whereas thermal boundary resistance is a more broad term. This thermal resistance differs from contact resistance because it exists even at atomically perfect interfaces. Owing to differences in electronic and vibrational properties in different materials, when an energy carrier attempts to traverse the interface, it will scatter at the interface. The probability of transmission after scattering will depend on the available energy states on side 1 and side 2 of the interface.

<span class="mw-page-title-main">Lyddane–Sachs–Teller relation</span>

In condensed matter physics, the Lyddane–Sachs–Teller relation determines the ratio of the natural frequency of longitudinal optic lattice vibrations (phonons) of an ionic crystal to the natural frequency of the transverse optical lattice vibration for long wavelengths. The ratio is that of the static permittivity to the permittivity for frequencies in the visible range .

Heat transfer physics describes the kinetics of energy storage, transport, and energy transformation by principal energy carriers: phonons, electrons, fluid particles, and photons. Heat is thermal energy stored in temperature-dependent motion of particles including electrons, atomic nuclei, individual atoms, and molecules. Heat is transferred to and from matter by the principal energy carriers. The state of energy stored within matter, or transported by the carriers, is described by a combination of classical and quantum statistical mechanics. The energy is different made (converted) among various carriers. The heat transfer processes are governed by the rates at which various related physical phenomena occur, such as the rate of particle collisions in classical mechanics. These various states and kinetics determine the heat transfer, i.e., the net rate of energy storage or transport. Governing these process from the atomic level to macroscale are the laws of thermodynamics, including conservation of energy.

The acoustoelastic effect is how the sound velocities of an elastic material change if subjected to an initial static stress field. This is a non-linear effect of the constitutive relation between mechanical stress and finite strain in a material of continuous mass. In classical linear elasticity theory small deformations of most elastic materials can be described by a linear relation between the applied stress and the resulting strain. This relationship is commonly known as the generalised Hooke's law. The linear elastic theory involves second order elastic constants and yields constant longitudinal and shear sound velocities in an elastic material, not affected by an applied stress. The acoustoelastic effect on the other hand include higher order expansion of the constitutive relation between the applied stress and resulting strain, which yields longitudinal and shear sound velocities dependent of the stress state of the material. In the limit of an unstressed material the sound velocities of the linear elastic theory are reproduced.

In the physics of continuous media, spatial dispersion is usually described as a phenomenon where material parameters such as permittivity or conductivity have dependence on wavevector. Normally, such a dependence is assumed to be absent for simplicity, however spatial dispersion exists to varying degrees in all materials.

Stimulated Raman spectroscopy, also referred to as stimulated Raman scattering (SRS) is a form of spectroscopy employed in physics, chemistry, biology, and other fields. The basic mechanism resembles that of spontaneous Raman spectroscopy: a pump photon, of the angular frequency , which is scattered by a molecule has some small probability of inducing some vibrational transition, as opposed to inducing a simple Rayleigh transition. This makes the molecule emit a photon at a shifted frequency. However, SRS, as opposed to spontaneous Raman spectroscopy, is a third-order non-linear phenomenon involving a second photon—the Stokes photon of angular frequency —which stimulates a specific transition. When the difference in frequency between both photons resembles that of a specific vibrational transition the occurrence of this transition is resonantly enhanced. In SRS, the signal is equivalent to changes in the intensity of the pump and Stokes beams. The signals are typically rather low, of the order of a part in 10^5, thus calling for modulation-transfer techniques: one beam is modulated in amplitude and the signal is detected on the other beam via a lock-in amplifier. Employing a pump laser beam of a constant frequency and a Stokes laser beam of a scanned frequency allows for the unraveling of the spectral fingerprint of the molecule. This spectral fingerprint differs from those obtained by other spectroscopy methods such as Rayleigh scattering as the Raman transitions confer to different exclusion rules than those that apply for Rayleigh transitions.

<span class="mw-page-title-main">Phonon polariton</span> Quasiparticle form phonon and photon coupling

In condensed matter physics, a phonon polariton is a type of quasiparticle that can form in a diatomic ionic crystal due to coupling of transverse optical phonons and photons. They are particular type of polariton, which behave like bosons. Phonon polaritons occur in the region where the wavelength and energy of phonons and photons are similar, as to adhere to the avoided crossing principle.

References

  1. 1 2 3 4 5 Polian, Alain (2003). "Brillouin scattering at high pressure: an overview". Journal of Raman Spectroscopy. 34 (7–8): 633–637. Bibcode:2003JRSp...34..633P. doi:10.1002/jrs.1031. ISSN   0377-0486.
  2. Buzgar N., Apopei A., (2009) The Raman study of certain carbonates. Geologie. Tomul LV, 2, 97-112.
  3. Bass J. (1995) Elasticity of minerals, glasses, and melts. Mineral Physics and Crystallography: a Handbook of Physical Constants, AGU Reference Shelf 2, 45-63.
  4. 1 2 Muller U. P., Sanctuary R., Seck P., Kruger J. –Ch. (2005) Scanning Brillouin microscopy: acoustic microscopy at gigahertz frequencies. Archives des Sciences Naturelles, Physiques et Mathematiques, 46, 11-25. http://orbilu.uni.lu/handle/10993/13482
  5. Mazzacurati, V; Benassi, P; Ruocco, G (1988). "A new class of multiple dispersion grating spectrometers". Journal of Physics E: Scientific Instruments. 21 (8): 798–804. doi:10.1088/0022-3735/21/8/012. ISSN   0022-3735.
  6. 1 2 William Hayes; Rodney Loudon (13 December 2012). Scattering of Light by Crystals. Courier Corporation. ISBN   978-0-486-16147-1.
  7. Cummins & Schoen, 1972, Laser Handbook vol 2
  8. Fox, Mark (2010). Optical Properties of Solids (2 ed.). Oxford University Press. pp. 289–290. ISBN   9780199573363.