Alpha-particle spectroscopy

Last updated

Alpha spectrometry (also known as alpha(-particle) spectroscopy) is the quantitative study of the energy of alpha particles emitted by a radioactive nuclide that is an alpha emitter.

Contents

As emitted alpha particles are mono-energetic (i.e. not emitted with a spectrum of energies, such as beta decay) with energies often distinct to the decay they can be used to identify which radionuclide they originated from. [1]

Experimental methods

Example of how different paths of emitted mono-energetic alpha particles would lose energy and therefore cause signal broadening on the line spectrum. All paths lose energy to the air and detector window. Longer paths lose more energy. Paths iii & iv also show loss of energy passing through the source material itself. The red arrows indicate the magnitude of energy the particle is detected with. Si Detector energy broadening.svg
Example of how different paths of emitted mono-energetic alpha particles would lose energy and therefore cause signal broadening on the line spectrum. All paths lose energy to the air and detector window. Longer paths lose more energy. Paths iii & iv also show loss of energy passing through the source material itself. The red arrows indicate the magnitude of energy the particle is detected with.

Counting with a source deposited onto a metal disk

It is common to place a drop of the test solution on a metal disk which is then dried out to give a uniform coating on the disk. This is then used as the test sample. If the thickness of the layer formed on the disk is too thick then the lines of the spectrum are broadened to lower energies. This is because some of the energy of the alpha particles is lost during their movement through the layer of active material. [2]

Liquid scintillation

An alternative method is to use liquid scintillation counting (LSC), where the sample is directly mixed with a scintillation cocktail. When the individual light emission events are counted, the LSC instrument records the amount of light energy per radioactive decay event. The alpha spectra obtained by liquid scintillation counting are broaden because of the two main intrinsic limitations of the LSC method: (1) because the random quenching reduces the number of photons emitted per radioactive decay, and (2) because the emitted photons can be absorbed by cloudy or coloured samples (Lambert-Beer law). The liquid scintillation spectra are subject to Gaussian broadening, rather than to the distortion caused by the absorption of alpha-particles by the sample when the layer of active material deposited onto a disk is too thick.

Alpha spectra

Intensity against alpha energy for four isotopes, note that the line width is narrow and the fine details can be seen Alpha1spec.png
Intensity against alpha energy for four isotopes, note that the line width is narrow and the fine details can be seen
Intensity against alpha energy for four isotopes, note that the line width is wide and some of the fine details can not be seen. This is for liquid scintillation counting, where random effects cause a variation in the number of visible photons generated per alpha decay Alpha5spec.png
Intensity against alpha energy for four isotopes, note that the line width is wide and some of the fine details can not be seen. This is for liquid scintillation counting, where random effects cause a variation in the number of visible photons generated per alpha decay

From left to right the peaks are due to 209Po, 239Pu, 210Po and 241Am. The fact that isotopes such as 239Pu and 241Am have more than one alpha line indicates that the (daughter) nucleus can be in different discrete energy levels.

Calibration: MCA does not work on energy, it works on voltage. To relate the energy to voltage one must calibrate the detection system. Here different alpha emitting sources of known energy were placed under the detector and the full energy peak is recorded.

Measurement of thickness of thin foils: Energies of alpha particles from radioactive sources are measured before and after passing through the thin films. By measuring difference and using SRIM we can measure the thickness of thin foils.

Kinematics of alpha decay

The decay energy, Q (also called the Q-value of the reaction), corresponds to a disappearance of mass.

For the alpha decay nuclear reaction: , (where P is the parent nuclide and D the daughter).

, or to put in the more commonly used units: Q (MeV) = -931.5 ΔM (Da), (where ΔM = ΣMproducts - ΣMreactants). [3]

When the daughter nuclide and alpha particle formed are in their ground states (common for alpha decay), the total decay energy is divided between the two in kinetic energy (T):

The size of T is dependent on the ratio of masses of the products and due to the conservation of momentum (the parent's momentum = 0 at the moment of decay) this can be calculated:

and ,

The alpha particle, or 4He nucleus, is an especially strongly bound particle. This combined with the fact that the binding energy per nucleon has a maximum value near A=56 and systematically decreases for heavier nuclei, creates the situation that nuclei with A>150 have positive Qα-values for the emission of alpha particles.

For example, one of the heaviest naturally occurring isotopes, (ignoring charges):

Qα = -931.5 (234.043 601 + 4.002 603 254 13 - 238.050 788 2) = 4.2699 MeV [4]

Note that the decay energy will be divided between the alpha-particle and the heavy recoiling daughter so that the kinetic energy of the alpha particle (Tα) will be slightly less:

Tα = (234.043 601 / 238.050 788 2) 4.2699 = 4.198 MeV, (note this is for the 238gU to 238gTh reaction, which in this case has the branching ratio of 79%). The kinetic energy of the recoiling 234Th daughter nucleus is TD = (mα / mP) Qα = (4.002 603 254 13 / 238.050 788 2) 4.2699 = 0.0718 MeV or 71.8 keV, which whilst much smaller is still substantially bigger than that of chemical bonds (<10 eV) meaning the daughter nuclide will break away from whatever chemical environment the parent had been in.

Example of how the alpha particle energy detected decreases with increasing air pressure (from right to left). Change of alpha E with air pressure.png
Example of how the alpha particle energy detected decreases with increasing air pressure (from right to left).

The recoil energy is also the reason that alpha spectrometers, whilst run under reduced pressure, are not operated at too low a pressure so that the air helps stop the recoiling daughter from moving completely out of the original alpha-source and cause serious contamination problems if the daughters are themselves radioactive. [5]

The Qα‐values generally increase with increasing atomic number but the variation in the mass surface due to shell effects can overwhelm the systematic increase. The sharp peaks near A = 214 are due to the effects of the N = 126 shell.

Related Research Articles

<span class="mw-page-title-main">Alpha decay</span> Type of radioactive decay

Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle and thereby transforms or 'decays' into a different atomic nucleus, with a mass number that is reduced by four and an atomic number that is reduced by two. An alpha particle is identical to the nucleus of a helium-4 atom, which consists of two protons and two neutrons. It has a charge of +2 e and a mass of 4 u. For example, uranium-238 decays to form thorium-234.

<span class="mw-page-title-main">Beta decay</span> Type of radioactive decay

In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For example, beta decay of a neutron transforms it into a proton by the emission of an electron accompanied by an antineutrino; or, conversely a proton is converted into a neutron by the emission of a positron with a neutrino in so-called positron emission. Neither the beta particle nor its associated (anti-)neutrino exist within the nucleus prior to beta decay, but are created in the decay process. By this process, unstable atoms obtain a more stable ratio of protons to neutrons. The probability of a nuclide decaying due to beta and other forms of decay is determined by its nuclear binding energy. The binding energies of all existing nuclides form what is called the nuclear band or valley of stability. For either electron or positron emission to be energetically possible, the energy release or Q value must be positive.

<span class="mw-page-title-main">Beta particle</span> Ionizing radiation

A beta particle, also called beta ray or beta radiation, is a high-energy, high-speed electron or positron emitted by the radioactive decay of an atomic nucleus during the process of beta decay. There are two forms of beta decay, β decay and β+ decay, which produce electrons and positrons respectively.

<span class="mw-page-title-main">Decay energy</span>

The decay energy is the energy change of a nucleus having undergone a radioactive decay. Radioactive decay is the process in which an unstable atomic nucleus loses energy by emitting ionizing particles and radiation. This decay, or loss of energy, results in an atom of one type transforming to an atom of a different type.

<span class="mw-page-title-main">Radioactive decay</span> Emissions from unstable atomic nuclei

Radioactive decay is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha decay, beta decay, and gamma decay, all of which involve emitting one or more particles. The weak force is the mechanism that is responsible for beta decay, while the other two are governed by the electromagnetism and nuclear force. A fourth type of common decay is electron capture, in which an unstable nucleus captures an inner electron from one of the electron shells. The loss of that electron from the shell results in a cascade of electrons dropping down to that lower shell, resulting in emission of discrete X-rays from the transitions. A common example is iodine-125 commonly used in medical settings.

<span class="mw-page-title-main">Decay chain</span> Series of radioactive decays

In nuclear science, the decay chain refers to a series of radioactive decays of different radioactive decay products as a sequential series of transformations. It is also known as a "radioactive cascade". Most radioisotopes do not decay directly to a stable state, but rather undergo a series of decays until eventually a stable isotope is reached.

<span class="mw-page-title-main">Geiger–Marsden experiments</span> Experiments proving existence of atomic nuclei

The Geiger–Marsden experiments were a landmark series of experiments by which scientists learned that every atom has a nucleus where all of its positive charge and most of its mass is concentrated. They deduced this after measuring how an alpha particle beam is scattered when it strikes a thin metal foil. The experiments were performed between 1908 and 1913 by Hans Geiger and Ernest Marsden under the direction of Ernest Rutherford at the Physical Laboratories of the University of Manchester.

<span class="mw-page-title-main">Nuclear reaction</span> Process in which two nuclei collide to produce one or more nuclides

In nuclear physics and nuclear chemistry, a nuclear reaction is a process in which two nuclei, or a nucleus and an external subatomic particle, collide to produce one or more new nuclides. Thus, a nuclear reaction must cause a transformation of at least one nuclide to another. If a nucleus interacts with another nucleus or particle and they then separate without changing the nature of any nuclide, the process is simply referred to as a type of nuclear scattering, rather than a nuclear reaction.

<span class="mw-page-title-main">Uranium-238</span> Isotope of uranium

Uranium-238 is the most common isotope of uranium found in nature, with a relative abundance of 99%. Unlike uranium-235, it is non-fissile, which means it cannot sustain a chain reaction in a thermal-neutron reactor. However, it is fissionable by fast neutrons, and is fertile, meaning it can be transmuted to fissile plutonium-239. 238U cannot support a chain reaction because inelastic scattering reduces neutron energy below the range where fast fission of one or more next-generation nuclei is probable. Doppler broadening of 238U's neutron absorption resonances, increasing absorption as fuel temperature increases, is also an essential negative feedback mechanism for reactor control.

<span class="mw-page-title-main">Internal conversion</span>

Internal conversion is a non-radioactive decay process where an excited nucleus interacts electromagnetically with one of the orbital electrons of an atom. This causes the electron to be emitted (ejected) from the atom. Thus, in internal conversion (IC), a high-energy electron is emitted from the radioactive atom, but not from the nucleus. For this reason, the high-speed electrons resulting from internal conversion are not called beta particles, since the latter come from beta decay, where they are newly created in the nuclear decay process.

<span class="mw-page-title-main">Double beta decay</span> Type of radioactive decay

In nuclear physics, double beta decay is a type of radioactive decay in which two neutrons are simultaneously transformed into two protons, or vice versa, inside an atomic nucleus. As in single beta decay, this process allows the atom to move closer to the optimal ratio of protons and neutrons. As a result of this transformation, the nucleus emits two detectable beta particles, which are electrons or positrons.

<span class="mw-page-title-main">Cluster decay</span> Nuclear decay in which an atomic nucleus emits a small cluster of neutrons and protons

Cluster decay, also named heavy particle radioactivity or heavy ion radioactivity, is a rare type of nuclear decay in which an atomic nucleus emits a small "cluster" of neutrons and protons, more than in an alpha particle, but less than a typical binary fission fragment. Ternary fission into three fragments also produces products in the cluster size. The loss of protons from the parent nucleus changes it to the nucleus of a different element, the daughter, with a mass number Ad = AAe and atomic number Zd = ZZe, where Ae = Ne + Ze. For example:

Uranium (92U) is a naturally occurring radioactive element that has no stable isotope. It has two primordial isotopes, uranium-238 and uranium-235, that have long half-lives and are found in appreciable quantity in the Earth's crust. The decay product uranium-234 is also found. Other isotopes such as uranium-233 have been produced in breeder reactors. In addition to isotopes found in nature or nuclear reactors, many isotopes with far shorter half-lives have been produced, ranging from 214U to 242U. The standard atomic weight of natural uranium is 238.02891(3).

In nuclear physics, the Geiger–Nuttall law or Geiger–Nuttall rule relates the decay constant of a radioactive isotope with the energy of the alpha particles emitted. Roughly speaking, it states that short-lived isotopes emit more energetic alpha particles than long-lived ones.

<span class="mw-page-title-main">Valley of stability</span> Characterization of nuclide stability

In nuclear physics, the valley of stability is a characterization of the stability of nuclides to radioactivity based on their binding energy. Nuclides are composed of protons and neutrons. The shape of the valley refers to the profile of binding energy as a function of the numbers of neutrons and protons, with the lowest part of the valley corresponding to the region of most stable nuclei. The line of stable nuclides down the center of the valley of stability is known as the line of beta stability. The sides of the valley correspond to increasing instability to beta decay. The decay of a nuclide becomes more energetically favorable the further it is from the line of beta stability. The boundaries of the valley correspond to the nuclear drip lines, where nuclides become so unstable they emit single protons or single neutrons. Regions of instability within the valley at high atomic number also include radioactive decay by alpha radiation or spontaneous fission. The shape of the valley is roughly an elongated paraboloid corresponding to the nuclide binding energies as a function of neutron and atomic numbers.

In health physics, whole-body counting refers to the measurement of radioactivity within the human body. The technique is primarily applicable to radioactive material that emits gamma rays. Alpha particle decays can also be detected indirectly by their coincident gamma radiation. In certain circumstances, beta emitters can be measured, but with degraded sensitivity. The instrument used is normally referred to as a whole body counter.

The Gamow factor, Sommerfeld factor or Gamow–Sommerfeld factor, named after its discoverer George Gamow or after Arnold Sommerfeld, is a probability factor for two nuclear particles' chance of overcoming the Coulomb barrier in order to undergo nuclear reactions, for example in nuclear fusion. By classical physics, there is almost no possibility for protons to fuse by crossing each other's Coulomb barrier at temperatures commonly observed to cause fusion, such as those found in the sun. When George Gamow instead applied quantum mechanics to the problem, he found that there was a significant chance for the fusion due to tunneling.

Atomic recoil is the result of the interaction of an atom with an energetic elementary particle, when the momentum of the interacting particle is transferred to the atom as whole without altering non-translational degrees of freedom of the atom. It is a purely quantum phenomenon. Atomic recoil was discovered by Harriet Brooks, Canada's first female nuclear physicist, in 1904, but interpreted wrongly. Otto Hahn reworked, explained and demonstrated it in 1908/09. The physicist Walther Gerlach described radioactive recoil as "a profoundly significant discovery in physics with far-reaching consequences".

<span class="mw-page-title-main">Alpha particle</span> Helium-4 nucleus; particle of two protons and two neutrons

Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be produced in other ways. Alpha particles are named after the first letter in the Greek alphabet, α. The symbol for the alpha particle is α or α2+. Because they are identical to helium nuclei, they are also sometimes written as He2+
or 4
2
He2+
indicating a helium ion with a +2 charge. Once the ion gains electrons from its environment, the alpha particle becomes a normal helium atom 4
2
He
.

Nuclear forensics is the investigation of nuclear materials to find evidence for the source, the trafficking, and the enrichment of the material. The material can be recovered from various sources including dust from the vicinity of a nuclear facility, or from the radioactive debris following a nuclear explosion.

References

  1. Siegel, Peter (29 March 2021). "Nuclear decays" (PDF). Physics Department at Cal Poly Pomona. Archived (PDF) from the original on 2018-04-13.
  2. Vajda, Nora; Martin, Paul; Kim, Chang-Kyu (2012), "Alpha Spectrometry", Handbook of Radioactivity Analysis, Elsevier, pp. 380–381, doi:10.1016/b978-0-12-384873-4.00006-2, ISBN   978-0-12-384873-4 , retrieved 2021-03-29
  3. Choppin, Gregory R. (2002). Radiochemistry and nuclear chemistry. Gregory R. Choppin, Jan-Olov Liljenzin, Jan Rydberg (3rd ed.). Woburn, MA: Butterworth-Heinemann. p. 62. ISBN   978-0-08-051566-3. OCLC   182729523.
  4. "Livechart – Table of Nuclides – Nuclear structure and decay data". nds.iaea.org. Retrieved 2021-03-31.
  5. Sill, Claude W.; Olson, Dale G. (1970-11-01). "Sources and prevention of recoil contamination of solid-state alpha detectors". Analytical Chemistry. 42 (13): 1596–1607. doi:10.1021/ac60295a016. ISSN   0003-2700.