The Bulgarian cosmonaut program refers to human spaceflight efforts by the People's Republic of Bulgaria. The idea of a Bulgarian crewed space mission predated the launch of Sputnik 1 , the first artificial satellite. An informal proposal for the Soviet Union to send a Bulgarian cosmonaut in space was issued in 1964, but it was not seriously considered by the Soviets. Official space cooperation began in 1966 with the establishment of the Interkosmos programme which allowed Communist Bloc countries to access Soviet space technology and assets.
Under Interkosmos, Bulgaria sent its first cosmonaut, Georgi Ivanov, to the Salyut 6 space station in 1979 and became the sixth country in the world to have a citizen in space. However, a malfunction in his Soyuz 33 spacecraft prevented the crew from docking, and Ivanov only spent 31 orbits around Earth before safely descending back to Earth. A second Bulgarian cosmonaut, Aleksandar Aleksandrov, spent ten days on the Mir Space Station in 1988 and performed a variety of scientific experiments.
The launch of Sputnik 1 in October 1957 provided impetus for the first steps of space research in Bulgaria. Radio signals from the satellite were studied by the Ionospheric Radio Measurement and Control Centre, established the previous year. A station for optical tracking of Sputnik 1 was set up in November 1957 on Plana mountain. [1] Influenced by these events and publications of the International Astronautical Federation, engineer Georgi Asparuhov and Bulgarian Air Force captain Docho Haralampiev decided to introduce the wider public to the topic of space exploration. Haralampiev was also convinced that if a human were to fly in space next, the candidate had to be a pilot in excellent physical and mental condition. The two initiated a series of meetings with Bulgarian Army generals, pilots, aviation doctors, engineers, Bulgarian Communist Party members and Bulgarian Academy of Sciences representatives. [2]
As a result, the first dedicated space research body in Bulgaria, the Astronautical Society (BAS), was established in Sofia on 8 December 1957. [3] The rigid legal environment at the time prevented it from being formed as an independent entity, and it was initially organised as an Astronautics Section of the Defence Assistance Organisation. [2] Shortly after the Society's establishment, dozens of engineers and workers from the recently closed Factory 14 became members of the BAS. [4] The Society joined the International Astronautical Federation in 1958. In 1959, the first Bulgarian book on human spaceflight, The Human Organism and Interplanetary Flight, was published. [4]
The intensity of the Space Race increased further after Yuri Gagarin became the first human in space. In 1964, Bulgarian Air Force commander-in-chief Lt. Gen. Zahari Zahariev discussed with Soviet defence minister Rodion Malinovsky the possibility to send four Bulgarian pilots, the Stamenkov brothers, into space. Malinovsky did not consider the request a serious one, especially given the lack of Soviet spacecraft that could carry all four of the brothers. [5] The Soviet Union established its own body for international cooperation in space research, known as the Interkosmos council, in May 1966. As a Communist Bloc state, Bulgaria became one of its founding members. [6]
Bulgarian leader Todor Zhivkov subsequently ordered the establishment of the National Committee for the Research and Utilisation of Space (NCRUS) in February of the following year. NCRUS became a member of the Interkosmos council in April. By the end of 1967 the Committee adopted a programme of activities that included the development of joint Soviet-Bulgarian satellite instruments and studies on human physiology in microgravity. [7] Space activities were further concentrated under the Group of Space Physics under the Academy of Sciences in 1969, which became the Central Laboratory of Space Research (CLSR) in 1974. [8]
Bulgaria became actively involved in all components of Interkosmos. Instruments were placed in Vertikal sounding rockets, several satellites of the Interkosmos series, and ground control activities were carried out in cooperation with the Soviet Union and other Communist countries of the programme. [9] Bulgarian participation in crewed Interkosmos missions was part of the programme's broader Soviet objective of assisting Communist bloc countries in space research. [9] Furthermore, Interkosmos member countries were largely relieved of financial costs as the USSR virtually financed all R&D activities, flights and technology sharing. Member states only financed specific experiments in which they were interested. When the decision to extend Interkosmos cooperation to human spaceflight was taken in 1976, selection of candidates was made easier by nearly a decade of cooperation before that. [9]
Selection for the second Interkosmos cosmonaut class in Bulgaria was carried out in 1976–1977. [10] Bulgarian pilots who graduated at the Dolna Mitropoliya Air Force Academy between 1964 and 1972 were eligible for selection. Almost all of these graduates applied and were sent for medical examination by an aviation medicine commission. Candidates who passed the first round of tests were then sent to the Senior Military Medical Institute in Sofia and subjected to several weeks of examinations in isolated conditions. Only four candidates made it through the second round: Georgi Ivanov Kakalov, Aleksandr Aleksandrov, Georgi Yovchev and Ivan Nakov. A final round of examinations in Moscow in 1978 affirmed Ivanov and Aleksandrov as the most physically fit, and they were approved as prime and backup, respectively. [10]
The Interkosmos mission flight crew consisted of an experienced Soviet cosmonaut as a flight commander, while the member state cosmonaut served as a flight engineer or a research cosmonaut whose role was to oversee their assigned experiments and equipment. [9] Training was meticulous and intensive. The first phase included theoretical studies, flight practice in jet aircraft, weightlessness simulation, splashdown training, physical exercise, and retrieval training in difficult terrain. The second phase was more specific and concentrated on mastering the Soyuz spacecraft and the flight to the Salyut space station. [9]
In general, Interkosmos flights focused on five main areas of research: space physics, space meteorology, communications, space biology and medicine, and studies of the natural environment. [9] Ivanov's mission was focused primarily on space physics, communications and environmental studies. In December 1978, Spektar-15, a Bulgarian-made spectrometric system, was installed on the Salyut 6 training mock-up at Yuri Gagarin Cosmonaut Training Center. It was subsequently approved for space use. [11] Elements of the Spektar-15 were delivered to Salyut 6 on 14 March 1979 with the Progress 5 flight; these included the data storage block, the eyepiece, lens and filters. [12] Ivanov's experiments on the Spektar-15 or other equipment previously installed in the station includes the following: [13]
These were to be carried out alongside cosmonauts Vladimir Lyakhov and Valery Ryumin. Spektar-15 was later used by Cuban cosmonaut Arnaldo Tamayo Méndez. [9]
Soyuz 33 was launched from the Baikonur Cosmodrome (Kazakhstan) with Ivanov and flight commander Nikolay Rukavishnikov on 10 April 1979. The crew call sign was Saturn. [14] The flight was scheduled to dock with Salyut 6-Soyuz 32 on 12 April (Cosmonautics Day). [9] Upon approaching the Salyut, however, the final engine firing lasted only three seconds instead of six and the Igla docking system switched off. [14] The Soyuz' main engine had malfunctioned and docking maneuvers were now impossible. [15] Salyut crew member Lyakhov also observed a sideways jet toward the auxiliary engine during the failed main engine firing. [14]
The Soyuz 33 had limited life support resources and the crew had to return to Earth immediately. Flight control ordered the Soyuz crew to shut down the main engine completely in order to preserve its fuel supply. There were two options: begin descent on a very soft trajectory, which would land the spacecraft several thousand kilometres from the planned landing point, or a steep descent that would have subjected the crew to very high g-strain. [15] In both cases the Soyuz would have relied on the auxiliary engine, which was confirmed to have been damaged as well. The crew initiated a steep descent and manually programmed the auxiliary engine to run for 187 seconds, slowing down the spacecraft enough to place it in a landing corridor. Rukavishnikov, who had excellent command and experience of the Soyuz flight systems, switched off all automatic landing programmes. With the descent in progress, both Ivanov and Rukavishnikov felt that the damaged auxiliary engine had not provided enough impulse and decided to run it for another 25 seconds to further reduce the landing velocity. [15]
The Soyuz 33 landed surprisingly close to the initially scheduled landing point. Rukavishnikov and Ivanov's handling of the situation received praise. [15] The crew, however, had discarded the service module with the malfunctioning engine and the final component of the Spektar-15, an optoelectronic block, before descent. This meant that the malfunction could not be examined and a new Spektar optoelectronic block had to be produced for future missions. It was later integrated with the rest of the equipment on Salyut 6 and the Bulgarian experiments were initiated in 1981 by Soviet cosmonauts. [14] [16] Despite the aborted mission, Bulgaria became the fourth Interkosmos country (after Czechoslovakia, Poland and East Germany, in that order) [9] and the sixth in the world to send a citizen in space. [17] Ivanov's flight lasted one day, 23 hours and one minute, completing 31 orbits. [5]
The Mir space station core module was launched in February 1986 and the Spektar-256 system, a follow-up to the Spektar-15, was to be fitted on the station. [18] During an official visit to the Soviet Union in 1986, Bulgarian defence minister Dobri Dzhurov arranged for a Bulgarian cosmonaut to be sent to the station with Soviet assistance. Additional talks with Glavkosmos were subsequently initiated by CLSR director Prof. Boris Bonev, and an official agreement for a joint Soviet-Bulgarian mission was signed on 22 August 1986. Although similar in arrangement to the previous Interkosmos flight, this mission was a bilateral scientific agreement independent of the Interkosmos programme. Bulgaria agreed to pay for the mission by designing and manufacturing the equipment for it, and then providing it to the Soviet Union. [19]
Candidate selection began in November 1986 and involved more than 300 Bulgarian Air Force pilots. [19] The flight was scheduled for the summer of 1988, and applicants with command of Russian and computer skills were given preference to speed up the selection process. [20] Ten were selected for the final round of medical examinations by Soviet physicians in Sofia. The final four were Krasimir Stoyanov, Nikolay Raykov, Aleksandr Aleksandrov and his brother Plamen. The first three were certified for the mission. Aleksandrov and Stoyanov were selected to be the mission crew as prime and backup. [20]
The two were sent for flight training at the Yuri Gagarin Cosmonaut Training Centre on 10 January 1987. Aleksandrov was pictured in splashdown training with Vladimir Lyakhov and Aleksandr Serebrov in November, but the crew was later announced to include Anatoly Solovyev and Viktor Savinykh instead. Lyakhov and Serebrov were assigned to the backup crew with Stoyanov. [21] The flight and its scientific programme were named Shipka, after Shipka Pass where a crucial battle between Ottoman troops and a Bulgarian-Russian force occurred during the Liberation War of Bulgaria in 1877. [22]
The research schedule of the Shipka Programme encompassed five areas of study: space physics, Earth observation, space biology and medicine, materials science and space equipment. Bulgarian factories produced nine devices, each in five specimens: [23]
All Bulgarian-made devices were installed on the Mir a week ahead of Aleksandrov's flight. The equipment functioned better than expected during testing. [22] Aleksandrov later stated that computerisation of the experiments significantly increased efficiency as real-time results were generated and experiments could be performed repeatedly to verify the data. [24] Overall, Aleksandrov was to perform dozens of research activities related to the interstellar medium, the Galactic Center of the Milky Way and nearby galaxies, orientation using stars as a reference, synthesis of materials in microgravity, crystallisation, muscular, vestibular and ocular functioning, among others. Aleksandrov also continued work on experiments scheduled for Georgi Ivanov's flight (such as Kontrast-2 and Ilyuminator-2) and examined the properties of Bulgarian-made space food. [25]
The original flight date was scheduled for 21 June 1988, but by April 1988, it was advanced to 7 June. This was caused by changes in the station's orbit by the engines of the Progress 36 resupply spacecraft. The earlier launch date would have also provided better lighting conditions for the Rozhen experiment, another factor in pulling back the launch date. [14] The call sign of the crew was Rodnik. [14] Flight control was provided by TsUP as well as a newly-established Situational Centre in Stara Zagora, Bulgaria. [23]
Unlike previous launches when the event was recorded and only broadcast if successful, Aleksandrov's launch was broadcast live on Soviet television. [22] Liftoff took place on 7 June at 18:03 Moscow time on Soyuz TM-5, with Solovyev as flight commander, Savinykh as flight engineer and Aleksandrov as research cosmonaut. At the time, the Mir was staffed by Musa Manarov and Vladimir Titov, who had been there since 21 December 1987. At 18:02:22 on 9 June, the TM-5 began approach maneuvers on its 33rd orbit. At 19:40, the TM-5 had already established radio contact and TV transmissions, and was 400 metres from the Mir. Nine minutes later, live television broadcast of the approach was initiated. The TM-5 docked with the Mir at 19:55 and began pressure equalisation at 20:12. All hatches were open at 21:25 and the Soyuz crew transferred to the Mir at 21:27. [26]
Aleksandrov performed more than 56 experiments during his 9-day stay on the station. During the SON-K experiment, he confirmed the normal flow of all three phases of non-rapid eye movement sleep. [27] Aleksandrov also participated in a teleconference with state leader Todor Zhivkov which was aired live on Bulgarian National Television. [20] On the morning of 17 June, Solovyev, Savinykh and Aleksandrov began procedures to return to Earth with the Soyuz TM-4 flight. It detached from the Mir at 10:18 and initiated departure; re-entry engine firing occurred at 13:22:37 and the descent module entered the atmosphere at 13:50. The spacecraft landed at 14:13 some 205 kilometres southeast of Dzhezkazgan. [28]
Following Aleksandrov's flight, Bulgaria continued to design, produce and send equipment to the Mir space station. The Liulin class of instruments first developed for Aleksandrov's flight are now used on the International Space Station and on the ExoMars Trace Gas Orbiter. [29] [30] The Bulgarian SVET plant growth system later installed on the Mir was used to grow wheat and vegetables in space for the first time. [31]
After the collapse of Communism and the severe reduction of science funding, Bulgaria's cosmonaut programme was largely shelved. Much of the infrastructure became defunct. [24] In 2011, Georgi Ivanov urged the government to reboot the human spaceflight programme. Krasimir Stoyanov has suggested that domestic plant growth and radiation monitoring equipment could allow a Bulgarian cosmonaut to join a human mission to Mars in the future, provided there is government support. [32]
Despite the current lack of a crewed spaceflight programme, a fully functional Soyuz-TMA training analog is operational at the Aerospace Centre and Planetarium of the Yuri Gagarin Educational Complex in Kamchiya near Varna. [33]
Mission | Launch date | Prime | Backup | Duration | Station | Experiments | Mission insignia | |
---|---|---|---|---|---|---|---|---|
Soyuz 33 | 10 April 1979 | Georgi Ivanov | Aleksandr Aleksandrov | 1d 23h 01m | Salyut 6 (docking failed) | 24 (not performed) | ||
Mir EP-2 | 7 June 1988 | Aleksandr Aleksandrov | Krasimir Stoyanov | 9d 20h 10m | Mir | >56 | ||
Mir was a space station that operated in low Earth orbit from 1986 to 2001, operated by the Soviet Union and later by the Russian Federation. Mir was the first modular space station and was assembled in orbit from 1986 to 1996. It had a greater mass than any previous spacecraft. At the time it was the largest artificial satellite in orbit, succeeded by the International Space Station (ISS) after Mir's orbit decayed. The station served as a microgravity research laboratory in which crews conducted experiments in biology, human biology, physics, astronomy, meteorology, and spacecraft systems with a goal of developing technologies required for permanent occupation of space.
The Salyut programme was the first space station programme, undertaken by the Soviet Union. It involved a series of four crewed scientific research space stations and two crewed military reconnaissance space stations over a period of 15 years, from 1971 to 1986. Two other Salyut launches failed. In one respect, Salyut had the task of carrying out long-term research into the problems of living in space and a variety of astronomical, biological and Earth-resources experiments, and on the other hand the USSR used this civilian programme as a cover for the highly secretive military Almaz stations, which flew under the Salyut designation. Salyut 1, the first station in the programme, became the world's first crewed space station.
Interkosmos was a Soviet space program, designed to help the Soviet Union's allies with crewed and uncrewed space missions.
Soyuz 10 was launched on 22 April 1971 as the world's first mission to the world's first space station, the Soviet Salyut 1. The docking was not successful and the crew, Vladimir Shatalov, Aleksei Yeliseyev, and Nikolai Rukavishnikov, returned to Earth without having entered the station. Following difficulties in docking pairs of Soyuz capsules, this would be the first of numerous docking failures in the Soviet space station program.
Nikolai Nikolayevich Rukavishnikov was a Soviet cosmonaut who flew three space missions of the Soyuz programme: Soyuz 10, Soyuz 16, and Soyuz 33. Two of these missions, Soyuz 10 and Soyuz 33, were intended to dock with Salyut space stations, but failed to do so.
Salyut 1 (DOS-1) was the world's first space station; it was launched into low Earth orbit by the Soviet Union on April 19, 1971. The Salyut program followed this with five more successful launches of seven more stations. The final module of the program, Zvezda (DOS-8), became the core of the Russian segment of the International Space Station and remains in orbit.
Salyut 5, also known as OPS-3, was a Soviet space station. Launched in 1976 as part of the Salyut programme, it was the third and last Almaz space station to be launched for the Soviet military. Two Soyuz missions visited the station, each crewed by two cosmonauts. A third Soyuz mission attempted to visit the station, but failed to dock, whilst a fourth mission was planned but never launched.
Salyut 6, DOS-5, was a Soviet orbital space station, the eighth station of the Salyut programme. It was launched on 29 September 1977 by a Proton rocket. Salyut 6 was the first space station to receive large numbers of crewed and uncrewed spacecraft for human habitation, crew transfer, international participation and resupply, establishing precedents for station life and operations which were enhanced on Mir and the International Space Station.
Salyut 7 was a space station in low Earth orbit from April 1982 to February 1991. It was first crewed in May 1982 with two crew via Soyuz T-5, and last visited in June 1986, by Soyuz T-15. Various crew and modules were used over its lifetime, including 12 crewed and 15 uncrewed launches in total. Supporting spacecraft included the Soyuz T, Progress, and TKS spacecraft.
Anatoly Yakovlevich Solovyev is a retired Russian and Soviet cosmonaut and pilot. Solovyev was born on January 16, 1948, in Riga, Latvia. Solovyev holds the world record on the number of spacewalks performed (16), and accumulated time spent spacewalking.
Major general Georgi Ivanov Kakalov is a Bulgarian former military officer who was the first Bulgarian cosmonaut. He was a member of the National Assembly of Bulgaria in 1990.
Soyuz 32 was a 1979 Soviet crewed space flight to the Salyut 6 space station. It was the eighth mission to and seventh successful docking at the orbiting facility. The Soyuz 32 crew was the third long-duration crew to man the space station.
Soyuz 33 was an April, 1979, Soviet crewed space flight to the Salyut 6 space station. It was the ninth mission to the orbiting facility, but an engine failure forced the mission to be aborted, and the crew had to return to Earth before docking with the station. It was the first failure of a Soyuz engine during orbital operations.
Soyuz 38 was a human spaceflight mission conducted by the Soviet Union during September, 1980. The Soyuz spacecraft brought two visiting crew members to the Salyut 6 space station, one of whom was an Intercosmos cosmonaut from Cuba.
Soyuz T-15 was a crewed mission to the Mir and Salyut 7 space stations and was part of the Soyuz programme. It marked the final flight of the Soyuz-T spacecraft, the third generation Soyuz spacecraft, which had been in service for seven years from 1979 to 1986. This mission marked the first time that a spacecraft visited, and docked with, two space stations in the same mission.
Soyuz TM-5 was a crewed Soyuz spaceflight to Mir. It was launched on June 7, 1988, carrying the Mir EP-2 mission's three-person crew. This week-long stay on Mir occurred during the third long-duration Mir expedition, Mir EO-3. The crew of EP-2 returned to Earth aboard Soyuz TM-4, while the TM-5 spacecraft remained docked to Mir, acting as the lifeboat for the long-duration crew. On September 7, 1988, the TM-5 spacecraft undocked from Mir, and landed Mir EP-3 mission's two-person visiting crew. The de-orbit procedures for Soyuz were revised after this flight, as multiple issues almost prevented the descent module's safe de-orbit and landing.
Aleksandr Panayotov Aleksandrov is a retired Bulgarian cosmonaut. He is the second Bulgarian to have flown to space, behind Georgi Ivanov.
Mir EO-3 was an expedition to the space station Mir. The crew consisted of 3 people, Musa Manarov (Commander), Vladimir Titov and Valeri Polyakov. Manarov and Titov arrived at the station in December 1987 on Soyuz TM-4, while Polyakov arrived much later, in August 1988 on Soyuz TM-6. After the arrival of Polyakov, medical experiments became more intensive.
Soyuz 6 EP-1 was a 1978 Soviet crewed space flight to the orbiting Salyut 6 space station, during the expedition EO-1. It was the third crewed flight to the station, and the second successful docking. It was also the first crew to visit an occupied station and marked the first time that three spacecraft were docked together. The launching spacecraft was Soyuz 27, and the crew of EP-1 are often referred to as the Soyuz 27 crew.
Mir EP-2 was a visiting expedition to the Mir space station conducted in June 1988 by cosmonauts Anatoly Solovyev, Viktor Savinykh and Aleksandr Aleksandrov. Launched aboard the Soyuz TM-5 spacecraft, the crew spent ten days in space before returning to Earth aboard Soyuz TM-4. The mission occurred while the EO-3 crew were aboard Mir.