This article needs additional citations for verification .(August 2009) |
A flight engineer (FE), also sometimes called an air engineer, is the member of an aircraft's flight crew who monitors and operates its complex aircraft systems. In the early era of aviation, the position was sometimes referred to as the "air mechanic". Flight engineers can still be found on some larger fixed-wing airplanes and helicopters. A similar crew position exists on some spacecraft. In most modern aircraft, their complex systems are both monitored and adjusted by electronic microprocessors and computers, resulting in the elimination of the flight engineer's position.
In earlier days, most larger aircraft were designed and built with a flight engineer's position. For U.S. civilian aircraft that require a flight engineer as part of the crew, the flight engineer must possess an FAA Flight Engineer Certificate with reciprocating, turboprop, or turbojet ratings appropriate to the aircraft. Whereas the four-engine Douglas DC-4 did not require a flight engineer, the FAA type certificates of subsequent four-engine reciprocating engine airplanes (Boeing 307 and 377, DC-6, DC-7, Constellation) and early two-, three- and four-engine jets (Boeing 707, 727, early 747s, DC-8, DC-10, L-1011, early A300s) required them. Smaller twinjets (DC-9, 737, BAC 1-11, Caravelle, Dassault Mercure) were never complex enough to require a flight engineer, while later large two, three, and four-engine jets (Airbus A310, A300-600, Boeing 767, MD-11, 747-400, and later) were designed with sufficient automation as to eliminate the need for the position.
In order to dedicate a person to monitor an aircraft's engines and its other critical flight systems, the position of "flight engineer" (FE) was created. The FE did not actually fly the airplane; instead, the FE's position had a specialized control panel allowing for the monitoring and control of various aircraft systems. The FE is therefore an integrated member of the flight deck crew who works in close coordination with the two pilots during all phases of flight.
Traditionally, the FE station has been usually placed on the main flight deck just aft of the pilot and copilot, and close to the navigator. Earlier referred to as a "flight mechanic" on the four-engine commercial seaplanes like the Sikorsky S-42, Martin M-130 and the Boeing 314 Clipper, the FE's role was referred to as an "engineer" (much like a ship's engineer) on the first very large flying boat, the Dornier Do X. On the Do X the FE operated a large and complex engineering station similar to later large transport aircraft to monitor the twelve engines.
The first US military aircraft to include a FE was the Consolidated PBY which was introduced into naval service in 1936. The FE panel was located in the pylon between the fuselage and the wing. The FE did not have ignition, throttle and propeller controls, thus a person in the cockpit was also required to start the engines. [1]
During the war the Avro Lancaster and Handley Page Halifax bombers employed FEs, as these large aircraft employed only a single pilot. The first Allied military operation during the Second World War involving FEs occurred in February 1941 with a Short Stirling; it was the first four-engined bomber-raid of the war by the RAF. [2]
The flight engineer ("air engineer" in the Royal Air Force) is primarily concerned with the operation and monitoring of all aircraft systems, [3] and is required to diagnose, and where possible rectify or eliminate, any faults that may arise. On most multi-engine airplanes, the FE sets and adjusts engine power during takeoff, climb, cruise, go-arounds, or at any time the pilot flying requests a specific power setting to be set during the approach phase. The FE sets and monitors major systems, [4] including fuel, pressurization and air conditioning, hydraulic, electrics (engine driven generators, auxiliary power units), gas turbine compressor/air turbine motor (APU, GTC, ATM), ice and rain protection (engine and nacelle anti-ice, window heat, probe heater), oxygen, fire and overheat protection of all systems, liquid cooling system, draw through cooling system, forced air cooling system, and powered flying controls.
FEs are also responsible for preflight and postflight aircraft inspections, and ensuring that the weight and balance of the aircraft is correctly calculated to ensure the centre of gravity is within limits. [4] On airplanes where the FE's station is located on the same flight deck just aft of the two pilots (all western three- and four-man deck airplanes), they also monitor an aircraft's flight path, speed, and altitude. A significant portion of their time is spent cross checking pilot selections. The FE is the systems expert of the airplane with an extensive mechanical and technical knowledge of aircraft systems and aircraft performance. [4] On some military airplanes (Lockheed C-5 Galaxy, Boeing E-3 Sentry, McDonnell Douglas KC-10) the FE sits behind the co-pilot in the cockpit, facing outboard to operate a panel of switches, gauges and indicators or forward to operate throttles, lighting controls, flight controls. On the Tupolev Tu-134 the FE sits in the nose of the aircraft. On other western military airplanes, such as on the Lockheed P-3 Orion and Lockheed C-130H Hercules, FEs sit between, slightly aft of (and, in the case of the C-130A-H models, slightly higher than) the pilots. On the P-3 Orion, E-6B Mercury and E-3 Sentry the FE is responsible for starting and shutting down engines at the start and end of each flight, and also during in-flight shutdowns which are carried out to save fuel on long range operations. In some militaries, the aircraft's FE is also authorised to make and certify repairs to the aircraft when it is away from its base. This can eliminate the need for technical repair crews to accompany the aircraft on short deployments.
On civilian airplanes the FE is positioned so that they can monitor the forward instruments, pilot selections and adjust the thrust levers located on the centre pedestal; the FE's chair can travel forward and aft and it can swivel laterally 90 degrees, which enables them to face forward and set the engine power, then move aft and rotate sideways to monitor and set the systems panel. The FE is the aircraft systems expert onboard and responsible for troubleshooting and suggesting solutions to in-flight emergencies and abnormal technical conditions, as well as computing takeoff and landing data. The FE's seat on modern aircraft has a complete range of motion (side to side, forward to aft, swivel, up and down) to accommodate the many positions required to monitor and operate the aircraft systems.
The basic philosophy of a three-person flight deck in many flight operations, should an abnormality or emergency arise, is for the captain to hand over the actual flying of the aircraft to the first officer (co-pilot). The captain and FE together review and carry out the necessary actions required to contain and rectify the problem. This spreads the workload and ensures a system of cross-checking which maximizes safety. The captain is the manager and decision maker (pilot not flying, PNF), the first officer, or co-pilot, is the actual flier of the aircraft (pilot flying, PF), and the FE reads the check-lists and executes actions required under the auspices of the captain. There can be occasions when the roles of the pilots during an emergency are reversed, i.e. the copilot becomes the PNF and the captain becomes the PF; one such example was on the A300 B-Series aircraft when there was a complete loss of generator-supplied electrical power, whereupon the standby instruments that were powered were on the captain's side only, requiring the captain to be PF and the PNF and FE to resolve the issue.
During World War II many U.S. bomber aircraft incorporated a flight engineer's position. However, this position also doubled as a gunner, usually operating the upper turret, as was the case of the Boeing B-17 Flying Fortress. On some commercial airliners with a flight engineer, the FE is the third in command, after the captain and first officer.
![]() | The examples and perspective in this section may not represent a worldwide view of the subject.(January 2022) |
Unlike commercial pilots, the Federal Aviation Administration never set a mandatory retirement age for flight engineers. As a result, some pilots would voluntarily downgrade themselves when turning 60. [5] This policy was the subject of two U.S. Supreme Court cases in 1985, when it ruled against Western Airlines that forced retirement of flight engineers based on the regulations for pilots was a violation of the Age Discrimination in Employment Act. Earlier in the year it had rejected a policy that prevented pilots from "bumping" flight engineers from their positions upon the former reaching retirement age. [6]
Starting in the 1980s, the development of powerful and small integrated circuits and other advances in computers and digital technology eliminated the need for flight engineers on airliners and many modern military aircraft.
On two-pilot flight deck airplanes, sensors and computers monitor and adjust systems automatically. [3] There is no onboard technical expert and third pair of eyes. If a malfunction, abnormality or emergency occurs, it is displayed on an electronic display panel. One pilot does the flying while the other pilot starts reading and executing the quick reference handbook (QRH) to resolve the problem. Modern technological advancements in today's aircraft have reduced the dependence upon human control over systems. [3]
The most recent aircraft built with FE stations include military variants of the Boeing 707, such as the E-3 Sentry and E-6 Mercury, both built through 1991, [7] the Tupolev Tu-154, the final example of which was delivered in 2013, [8] and the Scaled Composites Stratolaunch whose sole example first flew in 2019. [9] The last major US passenger airline to fly aircraft equipped with a flight engineer's station was Northwest Airlines, who retired their final 747-200s from charter service in 2009. [10] The final major cargo operator to employ flight engineers was FedEx Express when they retired the last of their 727s in 2013. [11] FedEx continued to operate the DC-10 until the end of 2022, all of which were originally delivered with a flight engineer's station, however all examples that were still in the fleet had been converted to MD-10 standard, which provided for a two-crew cockpit.
Avionics are the electronic systems used on aircraft. Avionic systems include communications, navigation, the display and management of multiple systems, and the hundreds of systems that are fitted to aircraft to perform individual functions. These can be as simple as a searchlight for a police helicopter or as complicated as the tactical system for an airborne early warning platform.
The Boeing 767 is an American wide-body airliner developed and manufactured by Boeing Commercial Airplanes. The aircraft was launched as the 7X7 program on July 14, 1978, the prototype first flew on September 26, 1981, and it was certified on July 30, 1982. The initial 767-200 variant entered service on September 8, 1982, with United Airlines, and the extended-range 767-200ER in 1984. It was stretched into the 767-300 in October 1986, followed by the extended-range 767-300ER in 1988, the most popular variant. The 767-300F, a production freighter version, debuted in October 1995. It was stretched again into the 767-400ER from September 2000.
An aircraft pilot or aviator is a person who controls the flight of an aircraft by operating its directional flight controls. Some other aircrew members, such as navigators or flight engineers, are also considered aviators because they are involved in operating the aircraft's navigation and engine systems. Other aircrew members, such as drone operators, flight attendants, mechanics and ground crew, are not classified as aviators.
The Boeing 757 is an American narrow-body airliner designed and built by Boeing Commercial Airplanes. The then-named 7N7, a twinjet successor for the trijet 727, received its first orders in August 1978. The prototype completed its maiden flight on February 19, 1982, and it was FAA certified on December 21, 1982. Eastern Air Lines placed the initial 757-200 variant in commercial service on January 1, 1983. A package freighter (PF) variant entered service in September 1987 and a combi model in September 1988. The stretched 757-300 was launched in September 1996 and began service in March 1999. After 1,050 had been built for 54 customers, production ended in October 2004, while Boeing offered the largest 737 NG variants as a successor to the -200.
Air Canada Flight 143, commonly known as the Gimli Glider, was a Canadian scheduled domestic passenger flight between Montreal and Edmonton that ran out of fuel on Saturday, July 23, 1983, at an altitude of 41,000 feet (12,500 m), midway through the flight. The flight crew successfully glided the Boeing 767 to an emergency landing at a former Royal Canadian Air Force base in Gimli, Manitoba, which had been converted to a racetrack, Gimli Motorsports Park. It resulted in no serious injuries to passengers or persons on the ground, and only minor damage to the aircraft. The aircraft was repaired and remained in service until its retirement in 2008. This unusual aviation incident earned the aircraft the nickname "Gimli Glider."
A cockpit or flight deck is the area, on the front part of an aircraft, spacecraft, or submersible, from which a pilot controls the aircraft.
The Boeing E-4 Advanced Airborne Command Post (AACP), the current "Nightwatch" aircraft, is a strategic command and control military aircraft operated by the United States Air Force (USAF). The E-4 series are specially modified from the Boeing 747-200B for the National Emergency Airborne Command Post (NEACP) program.
Aircrew, also called flight crew, are personnel who operate an aircraft while in flight. The composition of a flight's crew depends on the type of aircraft, plus the flight's duration and purpose.
Flying Tiger Line, also known as Flying Tigers, was the first scheduled cargo airline in the United States and a major military charter operator during the Cold War era for both cargo and personnel. The airline was bought by Federal Express in 1989.
A loadmaster is an aircrew member on military transport aircraft or civilian aircraft tasked with the safe loading, transport and unloading of aerial cargoes. Loadmasters serve in the militaries and civilian airlines of many nations.
United Airlines Flight 811 was a regularly scheduled international flight from Los Angeles to Sydney, with intermediate stops at Honolulu and Auckland. On February 24, 1989, the Boeing 747-122 serving the flight experienced a cargo-door failure in flight shortly after leaving Honolulu. The resulting explosive decompression blew out several rows of seats, killing nine passengers. The aircraft returned to Honolulu and landed without further incident.
The Boeing Model 307 Stratoliner is an American stressed-skin four-engine low-wing tailwheel monoplane airliner derived from the B-17 Flying Fortress bomber, which entered commercial service in July 1940. It was the first airliner in revenue service with a pressurized cabin, which with supercharged engines, allowed it to cruise above the weather. As such it represented a major advance over contemporaries, with a cruising speed of 220 mph (350 km/h) at 20,000 ft (6,100 m) compared to the Douglas DC-3's 160 mph (260 km/h), at 8,000 ft (2,400 m) then in service. When it entered commercial service it had a crew of five to six, including two pilots, a flight engineer, two flight attendants and an optional navigator, and had a capacity for 33 passengers, which later modifications increased, first to 38, and eventually to 60.
British Airways Flight 009, sometimes referred to by its callsign Speedbird 9 or as the Jakarta incident, was a scheduled British Airways flight from London Heathrow to Auckland, with stops in Bombay, Kuala Lumpur, Perth, and Melbourne.
USAir Flight 5050 was a passenger flight that crashed on takeoff from LaGuardia Airport in Queens, New York. As the plane took off from LaGuardia's runway 31, the plane drifted to the left. After hearing a loud bang, the pilots attempted to reject the takeoff, but were unable to stop the plane short of the end of the runway. The plane continued past the end of the runway and plunged into Bowery Bay. Two passengers were killed.
United Air Lines Flight 266 was a scheduled passenger flight from Los Angeles International Airport, California, to General Mitchell International Airport, Milwaukee, Wisconsin, via Stapleton International Airport, Denver, Colorado. On January 18, 1969, at approximately 18:21 PST, the Boeing 727 operating the flight crashed into Santa Monica Bay, Pacific Ocean, about 11.5 miles (18.5 km) west of Los Angeles International Airport, four minutes after takeoff, killing all 38 on board.
A Weapon Systems Officer (WSO), nicknamed "Wizzo", is an air flight officer directly involved in all air operations and weapon systems of a military aircraft.
The Future Air Navigation System (FANS) is an avionics system which provides direct data link communication between the pilot and the air traffic controller. The communications include air traffic control clearances, pilot requests and position reporting. In the FANS-B equipped Airbus A320 family aircraft, an Air Traffic Services Unit (ATSU) and a VHF Data Link radio (VDR3) in the avionics rack and two data link control and display units (DCDUs) in the cockpit enable the flight crew to read and answer the controller–pilot data link communications (CPDLC) messages received from the ground.
On February 13, 2018, around noon local time, a Boeing 777-222 airplane, operating as United Airlines Flight 1175 (UA1175), experienced an in-flight separation of a fan blade in the No. 2 (right) engine while over the Pacific Ocean en route from San Francisco International Airport to the Daniel K. Inouye International Airport, Honolulu, Hawaii. During level cruise flight shortly before beginning a descent from flight level 360, and about 120 miles from HNL, the flight crew heard a loud bang, followed by a violent shaking of the airplane, followed by warnings of a compressor stall. The flight crew shut down the failed engine, declared an emergency, and began a drift-down descent, proceeding direct to HNL where they made a single-engine landing without further incident at 12:37 local time. There were no reported injuries to the 374 passengers and crew on board and the airplane damage was classified as minor under National Transportation Safety Board (NTSB) criteria.
Airborne Express Flight 827 was a functional evaluation flight (FEF) of an Airborne Express Douglas DC-8-63F that had undergone a major modification. On December 22, 1996, during the test flight, the aircraft stalled and crashed, killing all six people on board. Accident investigators determined the cause of the accident was improper crew control inputs.
Tower Air Flight 41 was a scheduled domestic passenger flight from John F. Kennedy International Airport (JFK) in New York City, to Miami International Airport (MIA) in Florida. On December 20, 1995, the Boeing 747-100 operating the flight veered off the runway during takeoff from JFK. All 468 people on board survived, but 25 people were injured. The aircraft was damaged beyond repair and written off, making the accident the 25th hull loss of a Boeing 747. The National Transportation Safety Board (NTSB) concluded that the captain had failed to reject the takeoff in a timely manner.
External videos | |
---|---|
![]() |