Canid hybrid

Last updated

Canid hybrids are the result of interbreeding between the species of the subfamily Caninae .

Contents

Genetic considerations

The wolf-like canids are a group of large carnivores that are genetically closely related because they all possess 78 chromosomes, arranged in 39 pairs and are karyologically indistinguishable from each other. [1] [2] :p279 [3] The group includes the genera Canis, Cuon, Lupulella and Lycaon. The members are the domestic dog (C. lupus familiaris), gray wolf (C. lupus), dingo (C. lupus dingo), coyote (C. latrans), golden jackal (C. aureus), African wolf (C. lupaster), Ethiopian wolf (C. simensis), dhole (Cuon alpinus), black-backed jackal (Lupulella mesomelas), side-striped jackal (L. adusta) and African wild dog (Lycaon pictus). [4] Newly proposed members include the red wolf (Canis rufus), and the eastern wolf (Canis lycaon), subject to a resolution of the dispute as to whether these constitute separate species in their own right or whether they are sub-species of the gray wolf. The members of Canis can potentially interbreed, [5] however, it is believed that Cuon, Lupulella and Lycaon cannot breed with each other or with Canis. [6] [7] The Lupulella genus (the side-striped jackal and black-backed jackal), [8] could theoretically interbreed with each other to produce fertile offspring, but a study of the maternal mitochondrial DNA of the black-backed jackal could find no evidence of genotypes from its most likely mate, the side-striped jackal, indicating that male black-backed jackals had not bred with their sister species. [9]

When the differences in number and arrangement of chromosomes is too great, hybridization becomes less and less likely. Other members of the wider dog family, Canidae, such as South American canids, true foxes, bat-eared foxes, or raccoon dogs which diverged 7 to 10 million years ago, are less closely related to the wolf-like canids, have fewer chromosomes and cannot hybridize with them. [3] (recently proven, partly incorrect, see pampas fox with dog below) For instance, the red fox has 34 metacentric chromosomes and from 0 to 8 small B chromosomes, [10] the raccoon dog has 42 chromosomes, and the fennec fox has 64 chromosomes.

Wolf hybrids

Wolfdog hybrid

A Czechoslovakian Wolfdog Czechoslovakian-wolfdog-profile big.jpg
A Czechoslovakian Wolfdog

The domestic dog (Canis familiaris) is a domesticated species of the gray wolf (Canis lupus), along with the dingo (Canis lupus dingo). Therefore, crosses between these species are biologically unremarkable and not a hybridization in the same sense as an interbreeding between different species of Canidae.

Wolves are different from domestic dogs in that wolves usually have slimmer chests, longer legs, and they also have stronger jaws than those of the domestic dog subspecies. [11] The difference in appearance from the wolf to the domestic dog becomes even larger when a mix of the two animals is created. Wolfdogs do not have one common description of their appearance because it varies from one breeding cycle to the next. [11] It differs from cycle to cycle because the number of wolf genes inherited in the animal differs greatly and is recorded in a percentage form. The general layout for describing the percentage of wolfdogs is as follows: 1-49% is considered low content (LC), 50-74% is considered to be mid-content (MC), and 75% and higher is considered to be high content (HC).[ citation needed ] The percentage of the amount of wolf in a wolfdog decides what the animal will look like. For example, if a wolfdog is 25% husky and 75% wolf, it will appear more like a wolf than a husky because it contains more genes from the wolf. [12] This means that the appearance of the wolfdog will most likely contain a narrower chest, longer legs, and sharper teeth because it inherited more traits from the wolf parent. [12]

People wanting to improve domestic dogs or create an exotic pet may breed domestic dogs to wolves. Gray wolves have been crossed with dogs that have a wolf-like appearance, such as German Shepherds to form the Czechoslovakian Wolfdog. The breeding of wolf–dog crosses is controversial, with opponents purporting that it produces an animal unfit as a domestic pet. A number of wolfdog breeds are in development. The first generation crosses (one wolf parent, one dog parent) generally are backcrossed to domestic dogs to maintain a domestic temperament and consistent conformation.

Dingo hybrids

A dingo with an unusual color pattern Dingo, just relaxing.jpg
A dingo with an unusual color pattern

The dingo (Canis lupus dingo) breeds freely with other domestic dogs. This is now so widespread that in some areas, dingoes are now mostly mixed-breed dogs, crossed in recent times with dogs from other parts of the world. The dingo is closely related to the New Guinea singing dog [13] though recent DNA sequencing of a 'pure' wild dingo from South Australia suggests that the dingo is 'intermediate' between wolves and domestic dogs. [14] [15] This would make dingos a subspecies of wolf and so interbreeding between dingos and domestic dogs is also not a hybridization in the same sense as an interbreeding between different species of Canidae.

Some dingo hybrids are accepted back into the wild dingo population, where they breed with pure dingoes. The Australian Cattle Dog and Australian Stumpy Tail Cattle Dog breeds are known to have been created by crossing domesticated herding dogs, like the Collie, with the dingo.

Coyote hybrids

Coydogs

Coydogs (the offspring of a male coyote and a female domestic dog) are naturally occurring red or blond color variations of the coyote and feral dogs. The breeding cycles of domestic dogs and coyotes are not synchronized and this makes interbreeding uncommon. If interbreeding had been common, each successive generation of the coyote population would have acquired more and more dog-like traits.

Coywolves

Captive-bred F1 gray wolf-coyote hybrids at the Wildlife Science Center in Forest Lake, Minnesota Coywolf hybrids.jpg
Captive-bred F1 gray wolf-coyote hybrids at the Wildlife Science Center in Forest Lake, Minnesota

Hybridization between gray wolves and coyotes has long been recognized both in the wild and in captivity. In an evolutionary biology research conducted by a team of researchers in the Uppsala University, analysis of control region haplotypes of the mitochondrial DNA and sex chromosomes from Mexican wolves, a critically endangered subspecies of the gray wolf once nearly driven to extinction in the wild, confirmed the presence of coyote markers in some of the wolves. [16] The study suggests that at some point in time, female coyotes managed to mate with some of the male wolves of the remnant wild Mexican wolf populations. Analysis on the haplotype of some coyotes from Texas also detected the presence of male wolf introgression, such as Y chromosomes from the gray wolves in the southern coyotes. In one cryptozoological investigation on a corpse of what was initially labelled as a chupacabra, examinations conducted by the UC Davis team and the Texas State University concluded based on the sex chromosomes that the male animal was in fact another coyote and wolf hybrid sired by a male Mexican wolf. [17]

DNA analysis consistently shows that all existing red wolves carry coyote genes. This has caused a problem for canid taxonomy, as hybrids are not normally thought of as species, though the convention is to continue to refer to red wolves as a subspecies of the gray wolf, Canis lupus rufus, with no mention of the coyote taxon latrans. [18] [19]

In recent history, the taxonomic status of the red wolf has been widely debated. Mech (1970) suggested that red wolves may be fertile hybrid offspring from gray wolf (Canis lupus) and coyote (C. latrans) interbreeding. Wayne and Jenks (1991) and Roy et al. (1994b, 1996) supported this suggestion with genetic analysis. Phillips and Henry (1992) present logic supporting the contention that the red wolf is a subspecies of the gray wolf. However, recent genetic and morphological evidence suggests that the red wolf is a unique taxon. Wilson et al. (2000) report that gray wolves (Canis lupus lycaon) in southern Ontario appear genetically very similar to the red wolf and that these two canids may be subspecies of one another and not a subspecies of gray wolf. Wilson et al. (2000) propose that red wolves and C. lupus lycaon should be a separate species, C. lycaon, with their minor differences acknowledged via subspecies designation. North American wolf biologists and geneticists also concluded that C. rufus and C. lupus lycaon were genetically more similar to each other than either was to C. lupus or C. latrans (B. T. Kelly, unpubl.). In 2002, morphometric analyses of skulls also indicate that the red wolf is likely not to be a gray wolf–coyote hybrid (Nowak 2002). Therefore, while the red wolf's taxonomic status remains unclear, there is mounting evidence to support C. rufus as a unique canid taxon. [20]

Classifying animals commonly referred to as "eastern coyotes" or "northeastern coyotes" has become a problem for taxonomists, as it is unclear what new taxon will be used to refer to this new population of animals. [21]

African Canid hybrids

Illustration of golden jackal-African wolf hybrids bred in captivity (1821). Histoire naturelle des mammiferes, t. 3 (1824) Canis anthus x aureus.png
Illustration of golden jackal-African wolf hybrids bred in captivity (1821).

The Ethiopian wolf's conservation is threatened by dog hybridisation. [22] Animals resulting from Ethiopian wolf-dog hybridisation tend to be more heavily built than pure wolves, and have shorter muzzles and different coat patterns. [23] Management plans for hybridization with dogs involve sterilization of known hybrids. [24] Incidences of Ethiopian wolf-dog hybridization have been recorded in Bale's Web Valley. At least four hybrids were identified and sterilized in the area. Although hybridization has not been detected elsewhere, scientists are concerned that it could pose a threat to the wolf population's genetic integrity, resulting in outbreeding depression or a reduction in fitness, though this does not appear to have taken place.

The African gold wolf is known to hybridize with both domestic dogs and Ethiopian wolves, as well as Golden jackals. [25] [26]

Jackal hybrids

Three golden jackal-dog hybrids from Croatia. The discovery of these specimens confirmed that hybridization between the two canids occurs in the wild, and that the two have unlimited fertility with each other. Canis aureus x Canis familiaris.jpg
Three golden jackal-dog hybrids from Croatia. The discovery of these specimens confirmed that hybridization between the two canids occurs in the wild, and that the two have unlimited fertility with each other.

Although hybridization between wolves and golden jackals has never been observed, evidence of such occurrences was discovered through mtDNA analysis on jackals in Bulgaria. [28] Although there is no genetic evidence of gray wolf-jackal hybridization in the Caucasus Mountains, there have been cases where otherwise genetically pure golden jackals have displayed remarkably gray wolf-like phenotypes, to the point of being mistaken for wolves by trained biologists. [29]

Pampas fox hybrid

A hybrid of domestic dog and pampas fox Dogxim (cropped).png
A hybrid of domestic dog and pampas fox

Crossings between canids of a different genus is extremely rare. In 2021, a female canid with unusual phenotypic characteristics was found in Vacaria City, Rio Grande do Sul, Brazil. DNA analysis indicates that the canid was a hybrid between a pampas fox and a domestic dog. [33] Dubbed a 'Dogxim' or 'graxorra', [34] this finding is the first documented case of hybridisation detected between these two species. [33]

Legality

Dog hybrids kept as pets are prohibited in certain jurisdictions, or are classed as wild animals and must be housed in the same way as purebred wolves.

In the United States, legislation differs greatly from state to state. In New York, the law does not allow an individual to house or own a dog hybrid of any kind, even if there is a low percentage of wolf genes in the hybrid. [12] States such as Indiana and Arkansas allow the ownership of hybrid animals, but they regulate it strictly with health records, immunization records, and registration of the animal, [35] while other states, such as Arizona, do not have any laws about owning a wolfdog hybrid. [35] States may or may not create their own laws regarding the issue of wolfdog hybrids.

Related Research Articles

<span class="mw-page-title-main">Canidae</span> Family of mammals

Canidae is a biological family of dog-like carnivorans, colloquially referred to as dogs, and constitutes a clade. A member of this family is also called a canid. The family includes three subfamilies: the Caninae, and the extinct Borophaginae and Hesperocyoninae. The Caninae are known as canines, and include domestic dogs, wolves, coyotes, foxes, jackals and other species.

Subspecies of <i>Canis lupus</i>

There are 38 subspecies of Canis lupus listed in the taxonomic authority Mammal Species of the World. These subspecies were named over the past 250 years, and since their naming, a number of them have gone extinct. The nominate subspecies is the Eurasian wolf.

<span class="mw-page-title-main">Jackal</span> Several species of canines

Jackals are canids native to Africa and Eurasia. While the word "jackal" has historically been used for many canines of the subtribe canina, in modern use it most commonly refers to three species: the closely related black-backed jackal and side-striped jackal of sub-Saharan Africa, and the golden jackal of south-central Europe and Asia. The African golden wolf was also formerly considered a jackal.

<span class="mw-page-title-main">Red wolf</span> Canid native to the southeastern United States

The red wolf is a canine native to the southeastern United States. Its size is intermediate between the coyote and gray wolf.

<i>Canis</i> Genus of carnivores

Canis is a genus of the Caninae which includes multiple extant species, such as wolves, dogs, coyotes, and golden jackals. Species of this genus are distinguished by their moderate to large size, their massive, well-developed skulls and dentition, long legs, and comparatively short ears and tails.

<span class="mw-page-title-main">Wolfdog</span> Dog-wolf hybrid

A wolfdog is a canine produced by the mating of a domestic dog with a gray wolf, eastern wolf, red wolf, or Ethiopian wolf to produce a hybrid.

<span class="mw-page-title-main">Eastern wolf</span> Subspecies of carnivore

The eastern wolf, also known as the timber wolf, Algonquin wolf and eastern timber wolf, is a canine of debated taxonomy native to the Great Lakes region and southeastern Canada. It is considered to be either a unique subspecies of gray wolf or red wolf or a separate species from both. Many studies have found the eastern wolf to be the product of ancient and recent genetic admixture between the gray wolf and the coyote, while other studies have found some or all populations of the eastern wolf, as well as coyotes, originally separated from a common ancestor with the wolf over 1 million years ago and that these populations of the eastern wolf may be the same species as or a closely related species to the red wolf of the Southeastern United States. Regardless of its status, it is regarded as unique and therefore worthy of conservation with Canada citing the population in eastern Canada as being the eastern wolf population subject to protection.

<span class="mw-page-title-main">Golden jackal</span> Species of mammal

The golden jackal, also called the common jackal, is a wolf-like canid that is native to Eurasia. The golden jackal's coat varies in color from a pale creamy yellow in summer to a dark tawny beige in winter. It is smaller and has shorter legs, a shorter tail, a more elongated torso, a less-prominent forehead, and a narrower and more pointed muzzle than the Arabian wolf. It is listed as Least Concern on the IUCN Red List due to its widespread distribution and high density in areas with plenty of available food and optimum shelter.

<span class="mw-page-title-main">Coydog</span> Coyote and dog hybrid

A coydog is a canid hybrid resulting from a mating between a male coyote and a female dog. Hybrids of both sexes are fertile and can be successfully bred through four generations. Similarly, a dogote is a hybrid with a dog father and a coyote mother.

<span class="mw-page-title-main">Coywolf</span> Hybrid mammal

A coywolf is a canid hybrid descended from coyotes, eastern wolves, gray wolves, and dogs. All of these species are members of the genus Canis with 78 chromosomes; they therefore can interbreed. One genetic study indicates that these species genetically diverged relatively recently. Genomic studies indicate that nearly all North American gray wolf populations possess some degree of admixture with coyotes following a geographic cline, with the lowest levels occurring in Alaska, and the highest in Ontario and Quebec, as well as Atlantic Canada. Another term for these hybrids is sometimes wolfote.

<span class="mw-page-title-main">Japanese wolf</span> Extinct subspecies of the gray wolf

The Japanese wolf, also known as the Honshū wolf, is an extinct subspecies of the gray wolf that was once endemic to the islands of Honshū, Shikoku and Kyūshū in the Japanese archipelago.

<span class="mw-page-title-main">Himalayan wolf</span> Subspecies of mammal

The Himalayan wolf is a canine of debated taxonomy. It is distinguished by its genetic markers, with mitochondrial DNA indicating that it is genetically basal to the Holarctic grey wolf, genetically the same wolf as the Tibetan and Mongolian wolf, and has an association with the African wolf. No striking morphological differences are seen between the wolves from the Himalayas and those from Tibet. The Himalayan wolf lineage can be found living in Ladakh in the Himalayas, the Tibetan Plateau, and the mountains of Central Asia predominantly above 4,000 m (13,000 ft) in elevation because it has adapted to a low-oxygen environment, compared with other wolves that are found only at lower elevations.

<span class="mw-page-title-main">Black wolf</span> Melanistic wolf

A black wolf is a melanistic colour variant of the gray wolf. Black specimens were recorded among red wolves, though the colour phase in this species is not extinct yet. Genetic research from the Stanford University School of Medicine and the University of California, Los Angeles revealed that wolves with black pelts owe their distinctive coloration to a mutation which occurred in domestic dogs, and was carried to wolves through wolf-dog hybridization. Besides coat and knee colour, they are normal grey wolves.

A Dingo-dog hybrid is a cross between a dingo and a domestic dog. The current population of free ranging domestic dogs in Australia is probably higher than in the past. However, the proportion of the so-called "pure" dingoes has been on the decrease over the last few decades due to hybridisation and is regarded as further decreasing.

<span class="mw-page-title-main">Jackal–dog hybrid</span> Canid hybrid resulting from a mating between a dog and a golden jackal

A jackal–dog hybrid is a canid hybrid resulting from a mating between a domestic dog and a golden jackal. Such crossbreeding has occurred numerous times in captivity and was first confirmed to occasionally happen in the wild in Croatia in 2015.

<span class="mw-page-title-main">African wolf</span> Species of canine native to Africa

The African wolf is a canine native to North Africa, West Africa, the Sahel, northern East Africa, and the Horn of Africa. It is listed as least concern on the IUCN Red List. In the Middle Atlas in Morocco, it was sighted in elevations as high as 1,800 m (5,900 ft). It is primarily a predator of invertebrates and mammals as large as gazelle fawns, though larger animals are sometimes taken. Its diet also includes animal carcasses, human refuse, and fruit. They are monogamous and territorial; offspring remain with the parents to assist in raising their parents' younger pups.

<span class="mw-page-title-main">Evolution of the wolf</span>

It is widely agreed that the evolutionary lineage of the grey wolf can be traced back 2 million years to the Early Pleistocene species Canis etruscus, and its successor the Middle Pleistocene Canis mosbachensis. The grey wolf Canis lupus is a highly adaptable species that is able to exist in a range of environments and which possesses a wide distribution across the Holarctic. Studies of modern grey wolves have identified distinct sub-populations that live in close proximity to each other. This variation in sub-populations is closely linked to differences in habitat – precipitation, temperature, vegetation, and prey specialization – which affect cranio-dental plasticity.

This is a list of the species of Canidae ordered by average weights of adult individuals in the wild. It does not include canid hybrids or any domesticated animals. Only wild species of canids are included, all of which are described as species by authentic sources.

<span class="mw-page-title-main">Dogxim</span> Canid hybrid between a Pampas fox and a domesticated dog

Dogxim, or Graxorra in Portuguese, was a female canid hybrid between a Pampas fox and a domesticated dog that was discovered in Brazil during 2021. The canid showed a mixture of fox and dog behaviours, and a team of geneticists led by Thales Renato Ochotorena de Freitas and Rafael Kretschmer announced in 2023 that she was a distinct hybrid genetically that "represents the first documented case of hybridization between these two [fox and dog] species".

References

  1. Wurster-Hill, D. H.; Centerwall, W. R. (1982). "The interrelationships of chromosome banding patterns in canids, mustelids, hyena, and felids". Cytogenetics and Cell Genetics. 34 (1–2): 178–192. doi:10.1159/000131806. PMID   7151489.
  2. Robert K. Wayne; Jennifer A. Leonard; Carles Vila (2006). "Chapter 19:Genetic Analysis of Dog Domestication". In Melinda A. Zeder (ed.). Documenting Domestication:New Genetic and Archaeological Paradigms. University of California Press. pp. 279–295. ISBN   9780520246386. Archived from the original on 2023-02-10. Retrieved 2020-10-30.
  3. 1 2 Wayne, R.K. (1996-01-31). Avise, J.C.; Hamerick, J.L. (eds.). Conservation genetics: case histories from nature. Norwell, Massachusetts, USA: Kluwer Academic Publishers. pp. 75–118. ISBN   978-0-412-05581-2.
  4. Wayne, R. (1993). "Molecular evolution of the dog family". Trends in Genetics. 9 (6): 218–24. doi:10.1016/0168-9525(93)90122-X. PMID   8337763.
  5. Wayne, R.; Ostrander, Elaine A. (1999). "Origin, genetic diversity, and genome structure of the domestic dog". BioEssays. 21 (3): 247–57. doi:10.1002/(SICI)1521-1878(199903)21:3<247::AID-BIES9>3.0.CO;2-Z. PMID   10333734. S2CID   5547543.
  6. "Painted Wolves: The Colorful Carnivores of the African Wild". Live Science . 28 February 2019. Archived from the original on 13 April 2021. Retrieved 12 March 2021.
  7. Sillero-Zubiri, Claudio; Hoffmann, Michael J.; Dave Mech (2004). Canids: Foxes, Wolves, Jackals and Dogs: Status Survey and Conservation Action Plan. World Conservation Union. ISBN   978-2-8317-0786-0.[ page needed ]
  8. Greyling, L.M.; Van Der Bank, H.F.; Grobler, P.J.; Kotze, A. (2004). "Genetic characterisation of a domestic dog Canis familiaris breed endemic to South African rural areas". Acta Theriologica. 49 (3): 369–382. doi:10.1007/bf03192535. S2CID   12246085.
  9. Wayne, R.K.; Meyer, A.; Lehman, N.; van Valkenburgh, B.; Kat, P.W.; Fuller, T.K.; Girman, D.; O'Brien, S.J. (1990). "Large sequence divergence among mitochondrial DNA genotypes within populations of eastern African black-backed jackals" (PDF). Proceedings of the National Academy of Sciences of the United States of America . 87 (5): 1772–1776. Bibcode:1990PNAS...87.1772W. doi: 10.1073/pnas.87.5.1772 . PMC   53565 . PMID   1968637. Archived (PDF) from the original on 24 September 2015. Retrieved 21 December 2011.
  10. "Kukekova Lab - Department of Animal Sciences". cbsu.tc.cornell.edu. Archived from the original on 2011-07-19. Retrieved 2013-12-22.
  11. 1 2 Willems, Robert A. (1994). "The Wolf-dog Hybrid". Animal Welfare Information Center newsletter. Vol. 5, no. 4 Winter 1994/1995. National Agricultural Library U. S. Department of Agriculture. Beltsville, MD : National Agricultural Library, AWIC.
  12. 1 2 3 "Cree012807". www.adirondackwildlife.org. Archived from the original on 20 August 2013. Retrieved 16 September 2013.
  13. Cairns, Kylie M. (2021). "What is a dingo – origins, hybridisation and identity". Australian Zoologist. 41 (3): 322–337. doi: 10.7882/AZ.2021.004 .
  14. Field, Matt A.; Yadav, Sonu; Dudchenko, Olga; Esvaran, Meera; Rosen, Benjamin D.; Skvortsova, Ksenia; Edwards, Richard J.; Keilwagen, Jens; Cochran, Blake J.; Manandhar, Bikash; Bustamante, Sonia (2022-04-22). "The Australian dingo is an early offshoot of modern breed dogs". Science Advances. 8 (16): eabm5944. Bibcode:2022SciA....8M5944F. doi:10.1126/sciadv.abm5944. ISSN   2375-2548. PMC   9032958 . PMID   35452284.
  15. Ahmed, Issam. "Dingoes aren't just feral dogs, says study". phys.org. Archived from the original on 2 May 2022. Retrieved 2022-05-02.
  16. Hailer, Frank; Leonard, Jennifer A. (2008). "Hybridization among Three Native North American Canis Species in a Region of Natural Sympatry". PLOS ONE. 3 (10): e3333. Bibcode:2008PLoSO...3.3333H. doi: 10.1371/journal.pone.0003333 . PMC   2556088 . PMID   18841199.
  17. "UC-Davis team says chupacabra is likely coyote, wolf mix". KENS . February 1, 2008. Archived from the original on 2013-12-24. Retrieved 14 August 2013.
  18. Wayne, Bob (2008). "Red Wolves: to Conserve or not to Conserve". canids.org. Archived from the original on 2013-08-14. Retrieved 14 August 2013.
  19. "Mammal Species of the World : Lupus". Bucknell University . 2013. Archived from the original on 27 September 2013. Retrieved 14 August 2013.
  20. E.M. Gese; M. Bekoff (2008). "Chapter 4. Central and North America (Nearctic)" (PDF). Canids: Foxes, Wolves, Jackals and Dogs - 2004 Status Survey and Conservation Action Plan. Archived from the original (PDF) on 21 October 2011. Retrieved 14 August 2013.
  21. Grondahl, Paul (August 11, 2010). "The yowl of the suburbs". Times Union . Archived from the original on 4 February 2013. Retrieved 14 August 2013.
  22. Sillero-Zubiri, Claudio; Macdonald, David; Species Survival Commission Canid Specialist Group, eds. (1997). The Ethiopian Wolf: Status Survey and Conservation Action Plan (PDF) (Report). International Union for Conservation of Nature. p. 31. ISBN   2-8317-0407-3. Archived (PDF) from the original on 2023-08-13. Retrieved 2023-09-16.
  23. IUCN/SSC Canid Specialist Group 2011 , p. 32
  24. Chris Barichievy; Shayne Clugston; Robert Sheldon. "Field report : Association between an Arabian wolf and a domestic dog in central Saudi Arabia" (PDF). Canids.org. Archived (PDF) from the original on 24 January 2022. Retrieved 19 March 2022.
  25. Bahlk, S. H. (2015). Can hybridization be detected between African wolf and sympatric canids? . Master of Science Thesis. Center for Ecological and Evolutionary Synthesis Department of Bioscience Faculty of Mathematics and Natural Science, University of Oslo, Norway
  26. Koepfli, K.-P.; Pollinger, J.; Godinho, R.; Robinson, J.; Lea, A.; Hendricks, S.; Schweizer, R.M.; Thalmann, O.; Silva, P.; Fan, Z.; Yurchenko, A.A.; Dobrynin, P.; Makunin, A.; Cahill, J.A.; Shapiro, B.; Álvares, F.; Brito, J.C.; Geffen, E.; Leonard, J.A.; Helgen, K.M.; Johnson, W.E.; O'Brien, S.J.; van Valkenburgh, B.; Wayne, R.K. (2015). "Genome-wide evidence reveals that African and Eurasian golden jackals are distinct species". Current Biology. 25 (16): 2158–2165. Bibcode:2015CBio...25.2158K. doi: 10.1016/j.cub.2015.06.060 . PMID   26234211.
  27. Galov, Anna; et al. (2015). "First evidence of hybridization between golden jackal (Canis aureus) and domestic dog (Canis familiaris) as revealed by genetic markers". Royal Society Open Science. 2 (12): 150450. Bibcode:2015RSOS....250450G. doi:10.1098/rsos.150450. PMC   4807452 . PMID   27019731.
  28. Moura, A. E.; Tsingarska, E.; Dąbrowski, M. J.; Czarnomska, S. D.; Jędrzejewska, B. A.; Pilot, M. G. (2013). "Unregulated hunting and genetic recovery from a severe population decline: The cautionary case of Bulgarian wolves". Conservation Genetics. 15 (2): 405–417. doi: 10.1007/s10592-013-0547-y .
  29. Kopaliani, N.; Shakarashvili, M.; Gurielidze, Z.; Qurkhuli, T.; Tarkhnishvili, D. (2014). "Gene Flow between Wolf and Shepherd Dog Populations in Georgia (Caucasus)". Journal of Heredity. 105 (3): 345–53. doi: 10.1093/jhered/esu014 . PMID   24622972.
  30. Darwin, Charles (1868). The Variation of Animals and Plants Under Domestication. Volume 1 (1st ed.). London: John Murray. pp. 32–33. Archived from the original on 2011-02-28. Retrieved 2009-09-05.
  31. Natural History of the Mammalia of India and Ceylon by Robert Armitage Sterndale. 2006-10-16. Archived from the original on 2018-10-16. Retrieved 2018-10-15 via www.gutenberg.org.
  32. Viegas, Jennifer. Animal Planet: Jackal-Dog Created for Airport Security Archived 2010-11-22 at the Wayback Machine
  33. 1 2 Szynwelski, Bruna Elenara; Kretschmer, Rafael; Matzenbacher, Cristina Araujo; Ferrari, Flávia; Alievi, Marcelo Meller; de Freitas, Thales Renato (2023). "Hybridization in Canids—A Case Study of Pampas Fox (Lycalopex gymnocercus) and Domestic Dog (Canis lupus familiaris) Hybrid". Animals. 13 (15): 2505. doi: 10.3390/ani13152505 . PMC   10417603 . PMID   37570312.
  34. Vera, Fabricio (2023-09-16). "Cientisas identificam primeiro cruzamento entre raposa e cachorro" [Scientists identify first cross between fox and dog]. Jornal Opção (in Brazilian Portuguese). Goiânia, Brazil. Archived from the original on 2023-09-18. Retrieved 2023-09-17.
  35. 1 2 "HybridLaw.com - State laws regarding Hybrid cats, wolves, dogs and other animals". Archived from the original on 2013-10-06. Retrieved 16 September 2013.

Sources