Carbonado | |
---|---|
General | |
Category | Native minerals |
Formula (repeating unit) | C |
Crystal system | Isometric-hexoctahedral (cubic) |
Identification | |
Formula mass | 12.01 u |
Color | Typically black, can be grey, various shades of green and brown sometimes mottled. |
Crystal habit | Polycrystalline |
Fracture | Irregular torn surfaces |
Mohs scale hardness | 10 |
Luster | Adamantine |
Streak | White |
Specific gravity | 3.52±0.01 |
Density | 3.5–3.53 g/cm3 |
Polish luster | Adamantine |
Optical properties | None |
Birefringence | None |
Pleochroism | None |
Carbonado, commonly known as black diamond, is one of the toughest forms of natural diamond. It is an impure, high-density, micro-porous form of polycrystalline diamond consisting of diamond, graphite, and amorphous carbon, with minor crystalline precipitates filling pores and occasional reduced metal inclusions. [1] Titanium nitride (TiN, osbornite) has been found in carbonado. [2] It is found primarily in alluvial deposits where it is most prominent in mid-elevation equatorial regions such as Central African Republic and in Brazil, where the vast majority of carbonado diamondites have been found. Its natural colour is black or dark grey, and it is more porous than other diamonds.
Carbonado diamonds are typically pea-sized or larger porous aggregates of many tiny black crystals. The most characteristic carbonados are mined in the Central African Republic and in Brazil, in neither place associated with kimberlite, the source of typical gem diamonds. Lead isotope analyses have been interpreted as documenting crystallization of carbonados about 3 billion years ago; yet carbonado is found in younger sedimentary rocks. [3]
Mineral grains included within diamonds have been studied extensively for clues to diamond origin. Some typical diamonds contain inclusions of common mantle minerals such as pyrope and forsterite, but such mantle minerals have not been observed in carbonado. In contrast, some carbonados contain authigenic inclusions of minerals characteristic of the Earth's crust; the inclusions do not necessarily establish formation of the diamonds in the crust, because while the obvious crystal inclusions occur in the pores that are common in carbonados, they may have been introduced after carbonado formation. Inclusions of other minerals, rare or nearly absent in the Earth's crust, are found at least partly incorporated in diamond, not just in pores: among such other minerals are those with compositions of Si, SiC, and Fe‑Ni. No distinctive high-pressure minerals, including the hexagonal carbon polymorph, lonsdaleite, have been found as inclusions in carbonados although such inclusions might be expected if carbonados formed by meteorite impact. [3]
Isotope studies have yielded further clues to carbonado origin. The carbon isotope value is very low (little carbon‑13 compared to carbon‑12, relative to typical diamonds). [3]
Carbonado exhibits strong luminescence (photoluminescence and cathodoluminescence) induced by nitrogen and by vacancies existing in the crystal lattice. Luminescence halos are present around radioactive inclusions, and it is suggested that the radiation damage occurred after formation of the carbonados, [4] an observation perhaps pertinent to the radiation hypothesis listed below.
Carbonado’s polycrystalline texture makes it more durable than a monocrystalline diamond. It is the same hardness as other types of diamond, but it is much tougher. Its polycrystalline texture allows a single abrasive granule to present multiple crystallographic orientations of the diamond crystal at the cutting surface and the hardest orientation does the most aggressive cutting.
Cutting tools made with carbonado last longer and require less maintenance. Carbonado was recognized as an abrasive in the 1800s and was more highly valued for its cutting and grinding effectiveness over other varieties of diamond. The problem with carbonado is its rarity. It is only found in two countries, and total worldwide production has only been a few tons. Carbonado is not an important commodity in today's abrasive market.
In the late 1800s, when De Beers was developing their diamond mines in South Africa, they preferred carbonado over their own diamonds for diamond drilling. Gardner F. Williams, General Manager of De Beers Consolidated Mines, Ltd. lamented: "Round or shot boart is found in the mines at Kimberley and is very valuable for use in diamond drilling since the Brazilian carbonado has become so scarce." [5]
The origin of carbonado is controversial, and some proposed hypotheses are as follows:
The origin of carbonado is still under debate. [7] [8] [9]
Supporters of an extraterrestrial origin of carbonados such as Stephen Haggerty propose that their material source was a supernova which occurred at least 3.8 billion years ago. [10] [11] [12] [13] After coalescing and drifting through outer space for about one and a half billion years, a large mass fell to earth as a meteorite approximately 2.3 billion years ago. It possibly fragmented during entry into the Earth's atmosphere and impacted in a region which would much later split into Brazil and the Central African Republic, assumed to be the only two known locations of carbonado-diamond deposits.
The presence of osbornite, which only forms under very reducing conditions and at very high temperatures, argues for an extraterrestrial origin. [2]
The largest cut black diamond in the world is a carbonado named 'The Enigma', weighing 555.55 carats (111 g). [14]
Diamond is a solid form of the element carbon with its atoms arranged in a crystal structure called diamond cubic. Another solid form of carbon known as graphite is the chemically stable form of carbon at room temperature and pressure, but diamond is metastable and converts to it at a negligible rate under those conditions. Diamond has the highest hardness and thermal conductivity of any natural material, properties that are used in major industrial applications such as cutting and polishing tools. They are also the reason that diamond anvil cells can subject materials to pressures found deep in the Earth.
Lonsdaleite, also called hexagonal diamond in reference to the crystal structure, is an allotrope of carbon with a hexagonal lattice, as opposed to the cubical lattice of conventional diamond. It is found in nature in meteorite debris; when meteors containing graphite strike the Earth, the immense heat and stress of the impact transforms the graphite into diamond, but retains graphite's hexagonal crystal lattice. Lonsdaleite was first identified in 1967 from the Canyon Diablo meteorite, where it occurs as microscopic crystals associated with ordinary diamond.
Presolar grains are interstellar solid matter in the form of tiny solid grains that originated at a time before the Sun was formed. Presolar stardust grains formed within outflowing and cooling gases from earlier presolar stars.
Cosmochemistry or chemical cosmology is the study of the chemical composition of matter in the universe and the processes that led to those compositions. This is done primarily through the study of the chemical composition of meteorites and other physical samples. Given that the asteroid parent bodies of meteorites were some of the first solid material to condense from the early solar nebula, cosmochemists are generally, but not exclusively, concerned with the objects contained within the Solar System.
Moissanite is naturally occurring silicon carbide and its various crystalline polymorphs. It has the chemical formula SiC and is a rare mineral, discovered by the French chemist Henri Moissan in 1893. Silicon carbide or moissanite is useful for commercial and industrial applications due to its hardness, optical properties and thermal conductivity.
A chondrite is a stony (non-metallic) meteorite that has not been modified, by either melting or differentiation of the parent body. They are formed when various types of dust and small grains in the early Solar System accreted to form primitive asteroids. Some such bodies that are captured in the planet's gravity well become the most common type of meteorite by arriving on a trajectory toward the planet's surface. Estimates for their contribution to the total meteorite population vary between 85.7% and 86.2%.
Diamond is the allotrope of carbon in which the carbon atoms are arranged in the specific type of cubic lattice called diamond cubic. It is a crystal that is transparent to opaque and which is generally isotropic. Diamond is the hardest naturally occurring material known. Yet, due to important structural brittleness, bulk diamond's toughness is only fair to good. The precise tensile strength of bulk diamond is little known; however, compressive strength up to 60 GPa has been observed, and it could be as high as 90–100 GPa in the form of micro/nanometer-sized wires or needles, with a corresponding maximum tensile elastic strain in excess of 9%. The anisotropy of diamond hardness is carefully considered during diamond cutting. Diamond has a high refractive index (2.417) and moderate dispersion (0.044) properties that give cut diamonds their brilliance. Scientists classify diamonds into four main types according to the nature of crystallographic defects present. Trace impurities substitutionally replacing carbon atoms in a diamond's crystal structure, and in some cases structural defects, are responsible for the wide range of colors seen in diamond. Most diamonds are electrical insulators and extremely efficient thermal conductors. Unlike many other minerals, the specific gravity of diamond crystals (3.52) has rather small variation from diamond to diamond.
Carbonaceous chondrites or C chondrites are a class of chondritic meteorites comprising at least 8 known groups and many ungrouped meteorites. They include some of the most primitive known meteorites. The C chondrites represent only a small proportion (4.6%) of meteorite falls.
The Murchison meteorite is a meteorite that fell in Australia in 1969 near Murchison, Victoria. It belongs to the carbonaceous chondrite class, a group of meteorites rich in organic compounds. Due to its mass and the fact that it was an observed fall, the Murchison meteorite is one of the most studied of all meteorites.
Cosmic dust – also called extraterrestrial dust, space dust, or star dust – is dust that occurs in outer space or has fallen onto Earth. Most cosmic dust particles measure between a few molecules and 0.1 mm (100 μm), such as micrometeoroids. Larger particles are called meteoroids. Cosmic dust can be further distinguished by its astronomical location: intergalactic dust, interstellar dust, interplanetary dust, and circumplanetary dust. There are several methods to obtain space dust measurement.
The Allende meteorite is the largest carbonaceous chondrite ever found on Earth. The fireball was witnessed at 01:05 on February 8, 1969, falling over the Mexican state of Chihuahua. After it broke up in the atmosphere, an extensive search for pieces was conducted and over 2 tonnes were recovered. The availability of large quantities of samples of the scientifically important chondrite class has enabled numerous investigations by many scientists; it is often described as "the best-studied meteorite in history." The Allende meteorite has abundant, large calcium–aluminium-rich inclusions (CAI), which are among the oldest objects formed in the Solar System.
CI chondrites, also called C1 chondrites or Ivuna-type carbonaceous chondrites, are a group of rare carbonaceous chondrite, a type of stony meteorite. They are named after the Ivuna meteorite, the type specimen. CI chondrites have been recovered in France, Canada, India, and Tanzania. Their overall chemical composition closely resembles the elemental composition of the Sun, more so than any other type of meteorite.
The Barberton Greenstone Belt of eastern South Africa contains some of the most widely accepted fossil evidence for Archean life. These cell-sized prokaryote fossils are seen in the Barberton fossil record in rocks as old as 3.5 billion years. The Barberton Greenstone Belt is an excellent place to study the Archean Earth due to exposed sedimentary and metasedimentary rocks.
Stephen E. "Steve" Haggerty is an American geophysicist and Fulbright scholar. He served as a principal investigator in the U.S. Apollo and the Soviet Luna sample return programs. The metallic mineral known as "haggertyite" is named in his honor.
Hypatia is a small stone found in Egypt in 1996. It has been claimed to be both a meteorite and kimberlite debris. It has also been claimed to be the first known specimen of a comet nucleus on Earth, although defying physically-accepted models for hypervelocity processing of organic material. As of November 2023, Hypatia has not been officially classified as a meteorite in the Meteoritical Bulletin, which is tasked with recording all scientifically proven meteorites.
The earliest known life forms on Earth may be as old as 4.1 billion years old according to biologically fractionated graphite inside a single zircon grain in the Jack Hills range of Australia. The earliest evidence of life found in a stratigraphic unit, not just a single mineral grain, is the 3.7 Ga metasedimentary rocks containing graphite from the Isua Supracrustal Belt in Greenland. The earliest direct known life on land may be stromatolites which have been found in 3.480-billion-year-old geyserite uncovered in the Dresser Formation of the Pilbara Craton of Western Australia. Various microfossils of microorganisms have been found in 3.4 Ga rocks, including 3.465-billion-year-old Apex chert rocks from the same Australian craton region, and in 3.42 Ga hydrothermal vent precipitates from Barberton, South Africa. Much later in the geologic record, likely starting in 1.73 Ga, preserved molecular compounds of biologic origin are indicative of aerobic life. Therefore, the earliest time for the origin of life on Earth is at least 3.5 billion years ago, possibly as early as 4.1 billion years ago — not long after the oceans formed 4.5 billion years ago and after the formation of the Earth 4.54 billion years ago.
Although diamonds on Earth are rare, extraterrestrial diamonds are very common. Diamonds small enough that they contain only about 2000 carbon atoms are abundant in meteorites and some of them formed in stars before the Solar System existed. High pressure experiments suggest large amounts of diamonds are formed from methane on the ice giant planets Uranus and Neptune, while some planets in other planetary systems may be almost pure diamond. Diamonds are also found in stars and may have been the first mineral ever to have formed.
The geochemistry of carbon is the study of the transformations involving the element carbon within the systems of the Earth. To a large extent this study is organic geochemistry, but it also includes the very important carbon dioxide. Carbon is transformed by life, and moves between the major phases of the Earth, including the water bodies, atmosphere, and the rocky parts. Carbon is important in the formation of organic mineral deposits, such as coal, petroleum or natural gas. Most carbon is cycled through the atmosphere into living organisms and then respirated back into the atmosphere. However an important part of the carbon cycle involves the trapping of living matter into sediments. The carbon then becomes part of a sedimentary rock when lithification happens. Human technology or natural processes such as weathering, or underground life or water can return the carbon from sedimentary rocks to the atmosphere. From that point it can be transformed in the rock cycle into metamorphic rocks, or melted into igneous rocks. Carbon can return to the surface of the Earth by volcanoes or via uplift in tectonic processes. Carbon is returned to the atmosphere via volcanic gases. Carbon undergoes transformation in the mantle under pressure to diamond and other minerals, and also exists in the Earth's outer core in solution with iron, and may also be present in the inner core.
CM chondrites are a group of chondritic meteorites which resemble their type specimen, the Mighei meteorite. The CM is the most commonly recovered group of the 'carbonaceous chondrite' class of meteorites, though all are rarer in collections than ordinary chondrites.
Diamond inclusions are the non-diamond materials that get encapsulated inside diamond during its formation process in the mantle. The trapped materials can be other minerals or fluids like water. Since diamonds have high strength and low reactivity with either the inclusion or the volcanic host rocks which carry the diamond to the Earth's surface, the diamond serves as a container that preserves the included material intact under the changing conditions from the mantle to the surface. Although diamonds can only place a lower bound on the pressure of their formation, many inclusions provide additional constraints on the pressure, temperature and even age of formation.
{{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: DOI inactive as of May 2024 (link)