Chondrites (genus)

Last updated

Chondrites
Temporal range: Cambrian to Recent
Chondrites.JPG
Illustration of Chondrites bollensis.
ChondritesMiddleSilurian.jpg
A sample of Chondrites from the Middle Silurian.
Trace fossil classification OOjs UI icon edit-ltr.svg
Ichnogenus: Chondrites
Sternberg, 1833

Chondrites is a trace fossil ichnogenus, preserved as small branching burrows of the same diameter that superficially resemble the roots of a plant. The origin of these structures is currently unknown. Chondrites is found in marine sediments from the Cambrian period of the Paleozoic onwards. It is especially common in sediments that were deposited in reduced-oxygen environments. [1]

Contents

Morphology

There are four recognized Chondrites ichnospecies, however, aberrant forms of unknown taxonomic affinity have been discovered. [2] The fossils are made of infilled dendritic rootlike burrows. The branching angles are 30° to 40°, while a shaft diameter varies between 0.1 mm and 10 mm, remaining constant within a single system. [1] Chondrites is classified as a fodinichnion. [3]

Occurrence

First appearing during the Cambrian, Chondrites is still produced today. It is one of the most common ichnotaxa throughout the fossil record and is widely distributed in all types of marine sedimentary rocks, including sandstone, shale, limestone and marl that formed in environments ranging from subtidal shelves to the abyssal zone. [1] [4] The maker of the traces has been able to tolerate highly variable redox conditions. For example, Chondrites is abundant almost to the exclusion of other ichnogenera in Posidonia Shale, formed from laminated, black, carbonaceous clay, deposited in an anoxic, reducing environment. In the oxic, extensively bioturbated units of Austin Chalk, the fossil is very common as well.

Interpretation

Though the characteristic burrows are still produced today (in deep-sea deposits), no organism has ever been observed inside them. Several theories exist regarding the origin of these structures. While some authors hypothesize Chondrites to be the product of an infaunal abyssal nematode, others propose it to be formed by a chemosymbiotic organism, pumping methane and hydrogen sulfide from the sediments. [5] [6] Another study suggests it to be a fecal storage structure. [7]

The ichnogenus is found both in anaerobic, organic-rich sediments and in oxic layers, where it is almost invariably the last in the bioturbation sequence, i.e., it was placed deep within the sediments, away from oxidizing surficial and interstitial water. These suggest the trace-maker's ability to tolerate oxygen deprivation very well. Therefore, Chondrites can be used as an indicator of anoxia in sediments. [1]

Related Research Articles

<span class="mw-page-title-main">Burgess Shale</span> Fossil-bearing rock formation in the Canadian Rockies

The Burgess Shale is a fossil-bearing deposit exposed in the Canadian Rockies of British Columbia, Canada. It is famous for the exceptional preservation of the soft parts of its fossils. At 508 million years old, it is one of the earliest fossil beds containing soft-part imprints.

<span class="mw-page-title-main">Sedimentary rock</span> Rock formed by the deposition and subsequent cementation of material

Sedimentary rocks are types of rock that are formed by the accumulation or deposition of mineral or organic particles at Earth's surface, followed by cementation. Sedimentation is the collective name for processes that cause these particles to settle in place. The particles that form a sedimentary rock are called sediment, and may be composed of geological detritus (minerals) or biological detritus. The geological detritus originated from weathering and erosion of existing rocks, or from the solidification of molten lava blobs erupted by volcanoes. The geological detritus is transported to the place of deposition by water, wind, ice or mass movement, which are called agents of denudation. Biological detritus was formed by bodies and parts of dead aquatic organisms, as well as their fecal mass, suspended in water and slowly piling up on the floor of water bodies. Sedimentation may also occur as dissolved minerals precipitate from water solution.

<span class="mw-page-title-main">Trace fossil</span> Geological record of biological activity

A trace fossil, also known as an ichnofossil, is a fossil record of biological activity but not the preserved remains of the plant or animal itself. Trace fossils contrast with body fossils, which are the fossilized remains of parts of organisms' bodies, usually altered by later chemical activity or mineralization. The study of such trace fossils is ichnology and is the work of ichnologists.

<span class="mw-page-title-main">Bioturbation</span> Reworking of soils and sediments by organisms.

Bioturbation is defined as the reworking of soils and sediments by animals or plants. It includes burrowing, ingestion, and defecation of sediment grains. Bioturbating activities have a profound effect on the environment and are thought to be a primary driver of biodiversity. The formal study of bioturbation began in the 1800s by Charles Darwin experimenting in his garden. The disruption of aquatic sediments and terrestrial soils through bioturbating activities provides significant ecosystem services. These include the alteration of nutrients in aquatic sediment and overlying water, shelter to other species in the form of burrows in terrestrial and water ecosystems, and soil production on land.

Trace fossils are classified in various ways for different purposes. Traces can be classified taxonomically, ethologically, and toponomically, that is, according to their relationship to the surrounding sedimentary layers. Except in the rare cases where the original maker of a trace fossil can be identified with confidence, phylogenetic classification of trace fossils is an unreasonable proposition.

<i>Zoophycos</i> Trace fossil

Zoophycos is a somewhat cosmopolitan ichnogenus thought to be produced by moving and feeding polychaete worms.

<i>Climactichnites</i>

Climactichnites is an enigmatic, Cambrian fossil formed on or within sandy tidal flats around 510 million years ago. It has been interpreted in many different ways in the past, but is now thought to be a trace fossil of a slug-like organism that moved by crawling to on-shore surfaces, or near-shore, or burrowing into the sediment.

<span class="mw-page-title-main">Ediacaran biota</span> All organisms of the Ediacaran Period (c. 635–538.8 million years ago)

The Ediacaranbiota is a taxonomic period classification that consists of all life forms that were present on Earth during the Ediacaran Period. These were enigmatic tubular and frond-shaped, mostly sessile, organisms. Trace fossils of these organisms have been found worldwide, and represent the earliest known complex multicellular organisms. The term "Ediacara biota" has received criticism from some scientists due to its alleged inconsistency, arbitrary exclusion of certain fossils, and inability to be precisely defined.

<span class="mw-page-title-main">Marine sediment</span>

Marine sediment, or ocean sediment, or seafloor sediment, are deposits of insoluble particles that have accumulated on the seafloor. These particles have their origins in soil and rocks and have been transported from the land to the sea, mainly by rivers but also by dust carried by wind and by the flow of glaciers into the sea. Additional deposits come from marine organisms and chemical precipitation in seawater, as well as from underwater volcanoes and meteorite debris.

<i>Cruziana</i>

Cruziana is a trace fossil consisting of elongate, bilobed, approximately bilaterally symmetrical burrows, usually preserved along bedding planes, with a sculpture of repeated striations that are mostly oblique to the long dimension. It is found in marine and freshwater sediments. It first appears in upper Fortunian rocks of northern Iran and northern Norway. Cruziana has been extensively studied because it has uses in biostratigraphy, and because the traces can reveal many aspects of their makers' behavior.

The Tumblagooda Sandstone is a geological formation deposited during the Silurian or Ordovician periods, between four and five hundred million years ago, and is now exposed on the west coast of Australia in river and coastal gorges near the tourist town of Kalbarri, Kalbarri National Park and the Murchison River gorge, straddling the boundary of the Carnarvon and Perth basins. Visible trackways are interpreted by some to be the earliest evidence of fully terrestrial animals.

<i>Skolithos</i> Trace fossil

Skolithos is a common trace fossil ichnogenus that is, or was originally, an approximately vertical cylindrical burrow. It is produced by a variety of organisms in shallow marine environments globally and appear as lineated features in sedimentary rocks.

The Burgess Shale of British Columbia is famous for its exceptional preservation of mid-Cambrian organisms. Around 69 other sites have been discovered of a similar age, with soft tissues preserved in a similar, though not identical, fashion. Additional sites with a similar form of preservation are known from the Ediacaran and Ordovician periods.

<span class="mw-page-title-main">Cambrian substrate revolution</span> Diversification of animal burrowing

The "Cambrian substrate revolution" or "Agronomic revolution", evidenced in trace fossils, is a sudden diversification of animal burrowing during the early Cambrian period.

<i>Diplocraterion</i> Trace fossil

Diplocraterion is an ichnogenus describing vertical U-shaped burrows having a spreite between the two limbs of the U. The spreite of an individual Diplocraterion trace can be either protrusive or retrusive. Some ichnospecies have both types. The presence/absence of funnel-shaped openings should not be used as an ichnotaxobase due to the high probability that the upper portions of the trace may have been eroded away. Observation of the orientation of Diplocraterion in the field is frequently used to determine the way up of rock strata at outcrop.

<span class="mw-page-title-main">Microbial mat</span> Multi-layered sheet of microorganisms

A microbial mat is a multi-layered sheet of microorganisms, mainly bacteria and archaea, or bacteria alone. Microbial mats grow at interfaces between different types of material, mostly on submerged or moist surfaces, but a few survive in deserts. A few are found as endosymbionts of animals.

The Cambrian explosion, Cambrian radiation,Cambrian diversification, or the Biological Big Bang refers to an interval of time approximately 538.8 million years ago in the Cambrian Period when practically all major animal phyla started appearing in the fossil record. It lasted for about 13 – 25 million years and resulted in the divergence of most modern metazoan phyla. The event was accompanied by major diversification in other groups of organisms as well.

<span class="mw-page-title-main">Stephen Formation</span>

The Stephen Formation is a geologic formation exposed in the Canadian Rockies of British Columbia and Alberta, on the western edge of the Western Canada Sedimentary Basin. It consists of shale, thin-bedded limestone, and siltstone that was deposited during Middle Cambrian time. It is famous for the exceptional preservation of soft-bodied fossils: the Burgess Shale biota. The formation overlies the Cathedral escarpment, a submarine cliff; consequently it is divided into two quite separate parts, the 'thin' sequence deposited in the shallower waters atop the escarpment, and the 'thick' sequence deposited in the deeper waters beyond the cliff. Because the 'thick' Stephen Formation represents a distinct lithofacies, some authors suggest it warrants its own name, and dub it the Burgess Shale Formation. The stratigraphy of the Thin Stephen Formation has not been subject to extensive study, so except where explicitly mentioned this article applies mainly to the Thick Stephen Formation.

<span class="mw-page-title-main">Western Interior Seaway anoxia</span>

Three Western Interior Seaway anoxic events occurred during the Cretaceous in the shallow inland seaway that divided North America in two island continents, Appalachia and Laramidia. During these anoxic events much of the water column was depleted in dissolved oxygen. While anoxic events impact the world's oceans, Western Interior Seaway anoxic events exhibit a unique paleoenvironment compared to other basins. The notable Cretaceous anoxic events in the Western Interior Seaway mark the boundaries at the Aptian-Albian, Cenomanian-Turonian, and Coniacian-Santonian stages, and are identified as Oceanic Anoxic Events I, II, and III respectively. The episodes of anoxia came about at times when very high sea levels coincided with the nearby Sevier orogeny that affected Laramidia to the west and Caribbean large igneous province to the south, which delivered nutrients and oxygen-adsorbing compounds into the water column.

Euxinia or euxinic conditions occur when water is both anoxic and sulfidic. This means that there is no oxygen (O2) and a raised level of free hydrogen sulfide (H2S). Euxinic bodies of water are frequently strongly stratified, have an oxic, highly productive, thin surface layer, and have anoxic, sulfidic bottom water. The word euxinia is derived from the Greek name for the Black Sea (Εὔξεινος Πόντος (Euxeinos Pontos)) which translates to "hospitable sea". Euxinic deep water is a key component of the Canfield ocean, a model of oceans during the Proterozoic period (known as the Boring Billion) proposed by Donald Canfield, an American geologist, in 1998. There is still debate within the scientific community on both the duration and frequency of euxinic conditions in the ancient oceans. Euxinia is relatively rare in modern bodies of water, but does still happen in places like the Black Sea and certain fjords.

References

  1. 1 2 3 4 Bromley, R. G.; A. A. Ekdale (May 1984). "Chondrites: A Trace Fossil Indicator of Anoxia in Sediments". Science . 224 (4651): 872–874. doi:10.1126/science.224.4651.872. PMID   17743196.
  2. Uchman, Alfred; Andreas Wetzel (February 1999). "An aberrant, helicoidal trace fossil Chondrites Sternberg". Palaeogeography, Palaeoclimatology, Palaeoecology . 146 (1–4): 165–169. doi:10.1016/S0031-0182(98)00148-5.
  3. Hasiotis, Stephen (2011). "Chondrites : von Strenberg, 1833". University of Kansas. Archived from the original on August 26, 2012. Retrieved April 14, 2013.
  4. Głuszek, Arkadiusz (1998). "Trace fossils from Late Carboniferous storm deposits, Upper Silesia Coal Basin, Poland". Acta Palaeontologica Polonica . 43 (3): 517–546.
  5. Swinbanks, David D.; Yoshihisa Shirayama (October 1984). "Burrow stratigraphy in relation to manganese diagenesis in modern deep-sea carbonates". Deep-Sea Research Part A: Oceanographic Research Papers. 31 (10): 1197–1223. doi:10.1016/0198-0149(84)90058-x.
  6. Encinas, Alfonso; Luis A. Buatois; Kenneth L. Finger (2008). "Paleoecological and paleoenvironmental implications of a high-density Chondrites association in slope deposits of the Neogene Santo Domingo Formation, Valdivia, south-central Chile". Ameghiniana . 45 (1): 225–231.
  7. Kotake, Nobuhiro (1991). "Packing process for the filling material in Chondrites". Ichnos: An International Journal for Plant and Animal Traces. 1 (4): 277–285. doi:10.1080/10420949109386362.