Cladosporium oxysporum

Last updated

Contents

Cladosporium oxysporum
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Ascomycota
Class: Dothideomycetes
Order: Capnodiales
Family: Davidiellaceae
Genus: Cladosporium
Species:
C. oxysporum
Binomial name
Cladosporium oxysporum
Berk. & M.A.Curtis (1868)
Synonyms
  • Cladosporium subtileRabenhort (1876)

Cladosporium oxysporum is an airborne fungus that is commonly found outdoors and is distributed throughout the tropical and subtropical region, it is mostly located In Asia and Africa. [1] [2] It spreads through airborne spores and is often extremely abundant in outdoor air during the spring and summer seasons. [3] It mainly feeds on decomposing organic matter in warmer climates, [4] [5] but can also be parasitic and feed on living plants. [1] The airborne spores can occasionally cause cutaneous infections in humans, [4] and the high prevalence of C. oxysporum in outdoor air during warm seasons contributes to its importance as an etiological agent of allergic disease and possibly human cutaneous phaeohyphomycosis in tropical regions. [6] [7]

Taxonomy

This species was described by Reverend Miles Joseph Berkeley and Moses Ashley Curtis in 1868 in the Botanical Journal of the Linnean Society . [8]

Growth and morphology

Cladosporium oxysporum expands moderately, often floccose at the center of the fungus that consists of woolly tufts, and it can grow up to 650 μm long and 4-5 μm wide. [4] The colony is colored olive to olive-green on top with velvety surface, and greenish black at the bottom. [4] The conidiophores are either straight or slightly bent, [4] and the conidia range from oval to lemon-shaped. [9] C. oxysporum produces conidia in unbranched or branched chains arising from cylindrical base cells. [5] After the first spores have formed on the conidiophore, they bud apically to form secondary spores. [10] They have pores connected in very fragile chains that can fall apart at the slightest movement of air, [11] the spores are wind-dispersed and often extremely abundant in outdoor air under warm temperature. [3]

Habitat and ecology

Cladosporium oxysporum is mostly located Asia and Africa, [2] but it can also be found distributed throughout tropical and the subtropical regions. [1] The fungus is commonly found on dead herbaceous and woody plants in the tropics [5] as they are saprotrophs in warmer climates. [4] In general, most Cladosporium species are widely distributed throughout the world In tropical and subtropical regions, and growing In soil or on organic matters. [7] In a study conducted by Guan Et al., C. oxysporum was found to produce extracellular xylanase when grown on decaying agricultural waste. [12] Production of extracellular xylanase was enhanced by elevated levels of Mg2+ ion in the soil or the surrounding environment, but inhibited by the high levels of Cu2+ ion. [12] In the wild, C. oxysporum grows on hosts like Alnus , Bambusa , Citrus , Helianthus , and Pseudotsuga . [1]

Physiology

Cladosporium oxysporum is a saprobic secondary invader in warmer climates, [4] meaning they invade and feed on organisms that are weakened or already dead. It breaks down cellulose from dead herbaceous or plants, which is then further turned into glucose to Be used by the fungi themselves, [11] and it uses NH4Cl as a nitrogen source. [12] In a study by Oxenbøll et al., C. oxysporum catalyzed glucose oxidation by producing glucose oxidase, [13] which it is mentioned in another study conducted by Viswanathan et al. that the glucose oxidase helped protect against bacterial infection on the surface of fungi. [14] The organism is also proven to be very osmotolerant in a laboratory environment, meaning it can tolerate extreme changes in water availability. [3] C. oxysporum can be easily grown on agar media containing 10% glucose or 12 – 17% NaCl, they rarely grow on media containing 24% NaCl or 50% glucose and never isolated from media containing 32% NaCl or greater. [3] C. oxysporum exhibits high metal tolerance, allowing it to survive well in contaminated soil. [15]

Pathogenicity

Effects on humans

Cladosporium oxysporum is a low-risk microbe that usually poses little to No threat of infection In healthy adults As it has a Biosafety level of 1(BSL-1). [4] However, there have been rare reports of this fungus causing infection in humans. Only a handful of other species in the Cladosporium genera contributed to human infections, including C. cladosporioides, C. herbarum, C. sphaerospermum, and C. elatum. [7] [16] Although it is a rare cause of disease in humans, C. oxysporum has been reported as a cause of keratitis and cutaneous infections. [4] [17] A study by Forster et al. reported on 16 cases of keratitis caused by C. oxysporum in which 9 patients were healed by the use of Natamycin (Pimaricin), suggesting that the damage caused by this fungus was reversible. It is also reported that C. oxysporum can also cause occasional cutaneous phaeohyphomycosis and invasion of the neck lymph nodes in humans. [16] [6] Several genera of fungi are found to cause phaeohyphomycosis, but it is a rare case caused by C. oxysporum. [7] In a 2006 case report, a 30-year-old farmer in India was affected by phaeohyphomycosis due to the infection of C. oxysporum which caused large areas of lesion on the skin. It was also tested that phaeohyphomycosis occurred after implanting the fungus from the environment to exposed tissue. The patient was responded positively after receiving a treatment of saturated solution of potassium iodide (SSKI), showing dramatic regression of lesions within 3 weeks of the onset of therapy. [7]

Effects on insects

In a study conducted by Samways Et al. In South Africa in 1986, C. oxysporum was observed to cause mortality In certain species of homoptera, suggesting that it can be used as a potential targeted insecticide. The pathogen was grown in submerged culture and then applied to 4 species of insects: Planococcus citri , Pseudococcus longispinus , Pulvinaria aethiopica and Trioza erytreae . C. oxysporum successfully caused mortality and hyphal growth In all four species. Field applications of the fungus had a considerable initial impact on the insect populations, which made it a potential biocontrol agent. [18]

Effects on mice

In an experiment conducted in India in 1992 by Singh et al., an in vivo experiment was conducted on mice to determine the pathogenicity of C. oxysporum. No mortality occurred during the four-week period of the experiment, but the concentration of the microorganism inside of the body increased tremendously. The lungs were the most commonly infected organ As they presented with multiple nodules that had extensively invaded the endothelium of the bronchioles, and the surrounding tissues were heavily infiltrated with polymorphonuclear leucocytes. [19]

Effects on plants

It is also found in multiple studies suggesting that C. oxysporum is pathogenic to many vegetables and fruits. A study performed by Lamboy et al. studied the pathogenic effects of C. oxysporum to tomatoes. [9] The fungus creates dark brown, angular lesions on the tomato foliage known as "leaf spots", ultimately reducing the ability for the plant to survive. [9] The study also describes C. oxysporum as a causal agent of a leaf spot disease of pepper and also a storage disease of ripe tomato fruit. [9] Due to the high prevalence of this fungi in warm climax, they reproduce extremely well in a green house setting, which they were able to spread to healthy tomato plants in vicinity within three weeks. [9] Other studies also provided insight on the pathogenic effect of C. oxysporum on other vegetation; it causes the formation of scabs on the surface of passion-fruits, [20] and it also causes severe leaf blight in Prunus napaulensis , especially affecting the seedlings. [21]

Treatment

In a study performed by Raj et al., the fungal metabolite, taxol, extracted from Cladosporium oxysporum induced apoptosis in T47D human breast cancer cell line, which suggested that the extract may exert its anti-proliferative effect on human breast cancer cell line by suppressing growth, and down-regulating the expression of NF-B, Bcl-2 and Bcl-XL and up-regulation of pro-apoptotic proteins like Bax, cyt-C and caspase-3. [22] This discovery allowed the medical field to test a new substance to study the ongoing battle with cancer. In another study, fungal taxol extracted from C. oxysporum can Be used against human pathogenic bacteria and human colon cancer cell line HCT 15. [23] The taxol extracted could suppress the growth of the cancer cells As well as effectively combating both gram positive and gram negative bacteria.

Uses

It is proposed that C. oxysporum has a potential function in textile processes or paper/feed industries due to the xylanase resistance to most of tested neutral and alkaline proteases, meaning that xylanase would not be broken down by other protease, which allows it to continuously break down fiber into paper-making materials. [12] C. oxysporum can also be used to make tempeh; traditional soy product originating from Indonesia. [24] In multiple studies, C. oxysporum has been used in bioremediation. water bioremediation by targeting endosulfan [25] and it exhibits metal tolerance and an ability to synthesize gold nanoparticles with superior catalytic activity for degradation of rhodamine B. [15]

Related Research Articles

<span class="mw-page-title-main">Conidium</span> Asexual, non-motile spore of a fungus

A conidium, sometimes termed an asexual chlamydospore or chlamydoconidium, is an asexual, non-motile spore of a fungus. The word conidium comes from the Ancient Greek word for dust, κόνις (kónis). They are also called mitospores due to the way they are generated through the cellular process of mitosis. They are produced exogenously. The two new haploid cells are genetically identical to the haploid parent, and can develop into new organisms if conditions are favorable, and serve in biological dispersal.

<i>Cladosporium</i> Genus of fungi

Cladosporium is a genus of fungi including some of the most common indoor and outdoor molds. Some species are endophytes or plant pathogens, while others parasitize fungi.

<i>Aspergillus terreus</i> Species of fungus

Aspergillus terreus, also known as Aspergillus terrestris, is a fungus (mold) found worldwide in soil. Although thought to be strictly asexual until recently, A. terreus is now known to be capable of sexual reproduction. This saprotrophic fungus is prevalent in warmer climates such as tropical and subtropical regions. Aside from being located in soil, A. terreus has also been found in habitats such as decomposing vegetation and dust. A. terreus is commonly used in industry to produce important organic acids, such as itaconic acid and cis-aconitic acid, as well as enzymes, like xylanase. It was also the initial source for the drug mevinolin (lovastatin), a drug for lowering serum cholesterol.

<i>Setosphaeria rostrata</i> Pathogenic fungus

Setosphaeria rostrata is a heat tolerant fungus with an asexual reproductive form (anamorph) known as Exserohilum rostratum. This fungus is a common plant pathogen, causing leaf spots as well as crown rot and root rot in grasses. It is also found in soils and on textiles in subtropical and tropical regions. Exserohilum rostratum is one of the 35 Exserohilum species implicated uncommonly as opportunistic pathogens of humans where it is an etiologic agent of sinusitis, keratitis, skin lesions and an often fatal meningoencephalitis. Infections caused by this species are most often seen in regions with hot climates like Israel, India and the southern USA.

Exophiala jeanselmei is a saprotrophic fungus in the family Herpotrichiellaceae. Four varieties have been discovered: Exophiala jeanselmei var. heteromorpha, E. jeanselmei var. lecanii-corni, E. jeanselmei var. jeanselmei, and E. jeanselmei var. castellanii. Other species in the genus Exophiala such as E. dermatitidis and E. spinifera have been reported to have similar annellidic conidiogenesis and may therefore be difficult to differentiate.

Pathogenic fungi are fungi that cause disease in humans or other organisms. Although fungi are eukaryotic, many pathogenic fungi are microorganisms. Approximately 300 fungi are known to be pathogenic to humans; their study is called "medical mycology". Fungal infections are estimated to kill more people than either tuberculosis or malaria—about two million people per year.

<span class="mw-page-title-main">Marine fungi</span> Species of fungi that live in marine or estuarine environments

Marine fungi are species of fungi that live in marine or estuarine environments. They are not a taxonomic group, but share a common habitat. Obligate marine fungi grow exclusively in the marine habitat while wholly or sporadically submerged in sea water. Facultative marine fungi normally occupy terrestrial or freshwater habitats, but are capable of living or even sporulating in a marine habitat. About 444 species of marine fungi have been described, including seven genera and ten species of basidiomycetes, and 177 genera and 360 species of ascomycetes. The remainder of the marine fungi are chytrids and mitosporic or asexual fungi. Many species of marine fungi are known only from spores and it is likely a large number of species have yet to be discovered. In fact, it is thought that less than 1% of all marine fungal species have been described, due to difficulty in targeting marine fungal DNA and difficulties that arise in attempting to grow cultures of marine fungi. It is impracticable to culture many of these fungi, but their nature can be investigated by examining seawater samples and undertaking rDNA analysis of the fungal material found.

<i>Exophiala dermatitidis</i> Species of fungus

Exophiala dermatitidis is a thermophilic black yeast, and a member of the Herpotrichiellaceae. While the species is only found at low abundance in nature, metabolically active strains are commonly isolated in saunas, steam baths, and dish washers. Exophiala dermatitidis only rarely causes infection in humans, however cases have been reported around the world. In East Asia, the species has caused lethal brain infections in young and otherwise healthy individuals. The fungus has been known to cause cutaneous and subcutaneous phaeohyphomycosis, and as a lung colonist in people with cystic fibrosis in Europe. In 2002, an outbreak of systemic E. dermatitidis infection occurred in women who had received contaminated steroid injections at North Carolina hospitals.

<i>Cladophialophora bantiana</i> Species of fungus

Cladophialophora bantiana is a melanin producing mold known to cause brain abscesses in humans. It is one of the most common causes of systemic phaeohyphomycosis in mammals. Cladophialophora bantiana is a member of the ascomycota and has been isolated from soil samples from around the world.

Phaeohyphomycosis is a diverse group of fungal infections, caused by dematiaceous fungi whose morphologic characteristics in tissue include hyphae, yeast-like cells, or a combination of these. It can be associated with an array of melanistic filamentous fungi including Alternaria species, Exophiala jeanselmei, and Rhinocladiella mackenziei.

<i>Lichtheimia corymbifera</i> Species of fungus

Lichtheimia corymbifera is a thermophilic fungus in the phylum Zygomycota. It normally lives as a saprotrophic mold, but can also be an opportunistic pathogen known to cause pulmonary, CNS, rhinocerebral, or cutaneous infections in animals and humans with impaired immunity.

<i>Chaetomium globosum</i> Species of fungus

Chaetomium globosum is a well-known mesophilic member of the mold family Chaetomiaceae. It is a saprophytic fungus that primarily resides on plants, soil, straw, and dung. Endophytic C. globosum assists in cellulose decomposition of plant cells. They are found in habitats ranging from forest plants to mountain soils across various biomes. C. globosum colonies can also be found indoors and on wooden products.

<i>Cladosporium cladosporioides</i> Species of fungus

Cladosporium cladosporioides is a darkly pigmented mold that occurs world-wide on a wide range of materials both outdoors and indoors. It is one of the most common fungi in outdoor air where its spores are important in seasonal allergic disease. While this species rarely causes invasive disease in animals, it is an important agent of plant disease, attacking both the leaves and fruits of many plants. This species produces asexual spores in delicate, branched chains that break apart readily and drift in the air. It is able to grow under low water conditions and at very low temperatures.

<i>Rhinocladiella mackenziei</i> Species of fungus

Rhinocladiella mackenziei is a deeply pigmented mold that is a common cause of human cerebral phaeohyphomycosis. Rhinocladiella mackenziei was believed to be endemic solely to the Middle East, due to the first cases of infection being limited to the region. However, cases of R. mackenziei infection are increasingly reported from regions outside the Middle East. This pathogen is unique in that the majority of cases have been reported from immunologically normal people.

<i>Cladophialophora carrionii</i> Species of fungus

Cladophialophora carrionii is a melanized fungus in the genus Cladophialophora that is associated with decaying plant material like cacti and wood. It is one of the most frequent species of Cladophialophora implicated in human disease. Cladophialophora carrionii is a causative agent of chromoblastomycosis, a subcutaneous infection that occurs in sub-tropical areas such as Madagascar, Australia and northwestern Venezuela. Transmission occurs through traumatic implantation of plant material colonized by C. carrionii, mainly infecting rural workers. When C. carrionii infects its host, it transforms from a mycelial state to a muriform state to better tolerate the extreme conditions in the host's body.

<i>Cladosporium sphaerospermum</i> Species of fungus

Cladosporium sphaerospermum is a radiotrophic fungus belonging to the genus Cladosporium and was described in 1886 by Albert Julius Otto Penzig from the decaying leaves and branches of Citrus. It is a dematiaceous (darkly-pigmented) fungus characterized by slow growth and largely asexual reproduction. Cladosporium sphaerospermum consists of a complex of poorly morphologically differentiated, "cryptic" species that share many physiological and ecological attributes. In older literature, all of these sibling species were classified as C. sphaerospermum despite their unique nature. Accordingly, there is confusion in older literature reports on the physiological and habitat regularities of C. sphaerospermum in the strict sense. This fungus is most phylogenetically similar to C. fusiforme. According to modern phylogenetic analyses, the previously synonymized species, Cladosporium langeroni, is a distinct species.

Curvularia pallescens is a soil fungus, that commonly grows on crops found in tropical regions. The conidia of the fungus are distinguishable from those of related species due to their lack of curvature. C. pallescens has been reported to cause infection in plants, and in immunocompetent individuals. This species is the anamorph of Cochliobolus pallescens.

Cladophialophora arxii is a black yeast shaped dematiaceous fungus that is able to cause serious phaeohyphomycotic infections. C. arxii was first discovered in 1995 in Germany from a 22-year-old female patient suffering multiple granulomatous tracheal tumours. It is a clinical strain that is typically found in humans and is also capable of acting as an opportunistic fungus of other vertebrates Human cases caused by C. arxii have been reported from all parts of the world such as Germany and Australia.

Chaetomium perlucidum is a neurotropic dematiaceous fungus that is naturally found in the soil, including in agricultural soil, and in the stems of dead plants. The fungus can also be found on the feathers of birds, manure, seeds, and even paper. It is able to thrive at temperatures of 35 and 42 °C.

Hemibiotrophs are the spectrum of plant pathogens, including bacteria, oomycete and a group of plant pathogenic fungi that keep its host alive while establishing itself within the host tissue, taking up the nutrients with brief biotrophic-like phase. It then, in later stages of infection switches to a necrotrophic life-style, where it rampantly kills the host cells, deriving its nutrients from the dead tissues.

References

  1. 1 2 3 4 Farr, David F.; Bills, Gerald F.; Chamuris, George P.; Rossman, Amy Y. (1989). Fungi on Plants and Plant Products In the United States (2Nd ed.). St. Paul, Minn.: APS Press. p. 1252. ISBN   978-0890540992.
  2. 1 2 "Cladosporium oxysporum (seedlings blight of passion fruit)". www.cabi.org.
  3. 1 2 3 4 Rai, Mahendra (2005). Biodiversity of fungi : their role in human life. Science Publishers. ISBN   9781578083688.
  4. 1 2 3 4 5 6 7 8 9 de Hoog, G. S; Guarro, J; Gené, J; Figueras, M. J (2000). Atlas of clinical fungi (2Nd ed.). Centraalbureau voor Schimmelcultures. ISBN   978-90-70351-43-4.
  5. 1 2 3 Ellis, M. B (1971). Dematiaceous Hyphomycetes. Kew, Surrey, England: Commonwealth Mycology Institute.
  6. 1 2 Romano, C.; Bilenchi, R.; Alessandrini, C.; Miracco, C. (January 1999). "Case Report. Cutaneous phaeohyphomycosis caused by Cladosporium oxysporum". Mycoses. 42 (1–2): 111–115. doi:10.1046/j.1439-0507.1999.00263.x. ISSN   0933-7407. PMID   10394859. S2CID   35598608.
  7. 1 2 3 4 5 Gugnani, H. C.; Ramesh, V.; Sood, N.; Guarro, J.; Paliwal-Joshi, A.; Singh, B.; Makkar, R. (January 2006). "Cutaneous phaeohyphomycosis caused by Cladosporium oxysporum and its treatment with potassium iodide". Medical Mycology. 44 (3): 285–288. doi: 10.1080/13693780500294824 . ISSN   1369-3786. PMID   16830425.
  8. Berkeley, M. J; Curtis, M. A (1869). "Fungi Cubenses (Hymenomycetes)". Journal of the Linnean Society. 10 (45): 280–392. doi:10.1111/j.1095-8339.1868.tb00529.x.
  9. 1 2 3 4 5 Lamboy, J. S.; Dillard, H. R. (February 1997). "First Report of a Leaf Spot Caused by Cladosporium oxysporum on Greenhouse Tomato". Plant Disease. 81 (2): 228. doi:10.1094/pdis.1997.81.2.228d. ISSN   0191-2917. PMID   30870909.
  10. Skinner, C. E; Emmons, C. W; Tsughiya, H. M (1951). Molds, Yeasts, and Actinomycetes. p. 111.
  11. 1 2 Malloch, D (1981). Moulds: their isolation, cultivation, and identification . University of Toronto Press. ISBN   978-0-8020-2418-3.
  12. 1 2 3 4 Guan, Guo-Qiang; Zhao, Peng-Xiang; Zhao, Jin; Wang, Mei-Juan; Huo, Shu-Hao; Cui, Feng-Jie; Jiang, Jian-Xin (2016). "Production and Partial Characterization of an Alkaline Xylanase from a Novel Fungus Cladosporium oxysporum". BioMed Research International. 2016: 4575024. doi: 10.1155/2016/4575024 . ISSN   2314-6133. PMC   4861788 . PMID   27213150.
  13. Oxenbøll, K; Si, J. Q; Aagaard, J (3 May 1995). "Alkaline glucose oxidase obtained from Cladosporium oxysporum". US Grant.
  14. Viswanathan, Sowmya; Li, Pingzuo; Choi, Wonbong; Filipek, Slawomir; Balasubramaniam, T. A.; Renugopalakrishnan, V. (1 January 2012). "Protein–Carbon Nanotube Sensors". Nanomedicine - Infectious Diseases, Immunotherapy, Diagnostics, Antifibrotics, Toxicology and Gene Medicine. Methods in Enzymology. Vol. 509. pp. 165–194. doi:10.1016/B978-0-12-391858-1.00010-1. ISBN   9780123918581. ISSN   0076-6879. PMID   22568906.
  15. 1 2 Bhargava, Arpit; Jain, Navin; Khan, Mohd Azeem; Pareek, Vikram; Dilip, R. Venkataramana; Panwar, Jitendra (2016-12-01). "Utilizing metal tolerance potential of soil fungus for efficient synthesis of gold nanoparticles with superior catalytic activity for degradation of rhodamine B". Journal of Environmental Management. 183: 22–32. doi:10.1016/j.jenvman.2016.08.021. ISSN   1095-8630. PMID   27567934.
  16. 1 2 Jayasinghe, R. D.; Abeysinghe, W. A. M. U. L.; Jayasekara, P. I.; Mohomed, Y. S.; Siriwardena, B. S. M. S. (2017). "Unilateral Cervical Lymphadenopathy due to Cladosporium oxysporum: A Case Report and Review of the Literature". Case Reports in Pathology. 2017: 5036514. doi: 10.1155/2017/5036514 . PMC   5676383 . PMID   29209546.
  17. Forster, R. K.; Rebell, G.; Wilson, L. A. (1975). "Dematiaceous fungal keratitis. Clinical isolates and management". The British Journal of Ophthalmology. 59 (7): 372–376. doi:10.1136/bjo.59.7.372. ISSN   0007-1161. PMC   1042642 . PMID   1081406.
  18. Samways, M. J.; Grech, N. M. (1986). "Assessment of the fungus Cladosporium oxysporum (Berk. and Curt.) As a potential biocontrol agent against certain Homoptera". Agriculture, Ecosystems and Environment. 15 (4): 231–239. doi:10.1016/0167-8809(86)90122-2.
  19. Singh, Shanker Mohan; Singh, Mridula; Mukherjee, Shirshendu (March 1992). "Pathogenicity of Sporotrichum pruinosum and Cladosporium oxysporum, isolated from the bronchial secretions of a patient, for laboratory mice". Mycopathologia. 117 (3): 145–152. doi:10.1007/bf00442775. ISSN   0301-486X. PMID   1640976. S2CID   40053222.
  20. Willingham, S. L.; Pegg, K. G.; Langdon, P. W. B.; Cooke, A. W.; Peasley, D.; McLennan, R. (2002). "Combinations of strobilurin fungicides and acibenzolar (Bion) to reduce scab on passionfruit caused by Cladosporium oxysporum". Australasian Plant Pathology. 31 (4): 333. doi:10.1071/ap02036. ISSN   0815-3191. S2CID   37056101.
  21. Baiswar, P.; Chandra, S.; Bag, T. K.; Ngachan, S. V.; Deka, B. C. (2011). "Cladosporium oxysporum on Prunus nepalensis in India". Australasian Plant Disease Notes. 6 (1): 3–6. doi: 10.1007/S13314-011-0002-1 . ISSN   1833-928X.
  22. Raj, Kathamuthu Gokul; Sambantham, Shanmugam; Manikanadan, Ramar; Arulvasu, Chinnansamy; Pandi, Mohan (2014). "Fungal taxol extracted from Cladosporium oxysporum induces apoptosis in T47D human breast cancer cell line". Asian Pacific Journal of Cancer Prevention. 15 (16): 6627–6632. doi: 10.7314/apjcp.2014.15.16.6627 . ISSN   2476-762X. PMID   25169499.
  23. Gokul Raj, K; Manikandan, R; Pandi, M (5 March 2015). "Anti-proliferative effect of fungal taxol extracted from Cladosporium oxysporum against human pathogenic bacteria and human colon cancer cell line HCT 15". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 138: 667–674. Bibcode:2015AcSpA.138..667G. doi:10.1016/j.saa.2014.11.036. ISSN   1386-1425. PMID   25544183.
  24. Shurtleff, William; Aoyagi, Akiko (2011). History of fermented tofu : a healthy nondairy / vegan cheese (1610-2011) : extensively annotated bibliography and sourcebook. Soyinfo Center. ISBN   9781928914402.
  25. Mukherjee, I.; Mittal, A. (November 2005). "Bioremediation of endosulfan using Aspergillus terreus and Cladosporium oxysporum". Bulletin of Environmental Contamination and Toxicology. 75 (5): 1034–1040. doi:10.1007/S00128-005-0853-2. ISSN   0007-4861. PMID   16400595. S2CID   31633884.

]