CoRoT-8

Last updated
CoRoT-8
Observation data
Epoch J2000.0        Equinox J2000.0
Constellation Aquila
Right ascension 19h 26m 21.26s[ citation needed ]
Declination +01° 25 34.67[ citation needed ]
Characteristics
Evolutionary stage main sequence star
Spectral type K3V[ citation needed ]
Variable type planetary transit
Astrometry
Proper motion (μ)RA: 13.5768 ± 0.0475751[ citation needed ]  mas/yr
Dec.: -32.7832 ± 0.0418883[ citation needed ]  mas/yr
Parallax (π)3.07662 ± 0.0259729[ citation needed ]  mas
Details
Mass 0.88  M
Radius 0.77  R
Temperature 5143[ citation needed ]  K
Metallicity [Fe/H]-0.22 ± 0.11 Fe[ citation needed ]  dex
Age 1.7[ citation needed ]  Gyr

CoRoT-8 is a star in the constellation Aquila at a distance of about 1239 light-years from us. At least one planet revolves around the star.

CoRoT-8 is an orange dwarf which has 0.88 solar masses and 0.77 solar radius. [1] By astronomical standards, this is already a rather young star compared to the Sun: its age is about 3 billion years. It got its name in honor of the CoRoT space telescope, with the help of which its planetary companion was discovered.

In 2010, a group of astronomers working within the CoRoT program announced the discovery of the planet CoRoT-8b in this system. It is a hot gas giant, similar in mass and size to Saturn. The planet orbits at a distance of about 0.06 AU. e. from the parent star, while making a complete revolution in 6.21 days. [2] [3] [4]

The CoRoT-8 planetary system
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b 0.218 ± 0.034  MJ 0.0636 ± 0.00146.212445 ± 0.0000070.19

Related Research Articles

<span class="mw-page-title-main">CoRoT</span> European space telescope that operated between 2006 - 2014

CoRoT was a space telescope mission which operated from 2006 to 2013. The mission's two objectives were to search for extrasolar planets with short orbital periods, particularly those of large terrestrial size, and to perform asteroseismology by measuring solar-like oscillations in stars. The mission was led by the French Space Agency (CNES) in conjunction with the European Space Agency (ESA) and other international partners.

<span class="mw-page-title-main">WASP-8b</span> Planet orbiting a star in a binary system in the constellation of Sculptor

WASP-8b is an exoplanet orbiting the star WASP-8A in the constellation of Sculptor. The star is similar to the Sun and forms a binary star with a red dwarf star (WASP-8B) of half the Sun's mass that orbits WASP-8A 4.5 arcseconds away. The system is 294 light-years away and is therefore located closer to Earth than many other star systems that are known to feature planets similar to WASP-8b. The planet and its parent star were discovered in the SuperWASP batch -6b to -15b. On 1 April 2008, Dr. Don Pollacco of Queen's University Belfast announced them at the RAS National Astronomy Meeting.

<span class="mw-page-title-main">WASP-8</span> Star in the constellation of Sculptor

WASP-8 is a binary star system 294 light-years away. The star system is much younger than the Sun at 300 million to 1.2 billion years age, and is heavily enriched in heavy elements, having nearly twice the concentration of iron compared to the Sun.

CoRoT-4 is a yellow-white dwarf main-sequence star in the constellation Monoceros.

<span class="mw-page-title-main">CoRoT-7b</span> Hot Super-Earth orbiting CoRoT-7

CoRoT-7b is an exoplanet orbiting the star CoRoT-7 in the constellation of Monoceros, 489 light-years from Earth. It was first detected photometrically by the French-led CoRoT mission and reported in February 2009. Until the announcement of Kepler-10b in January 2011, it was the smallest exoplanet to have its diameter measured, at 1.58 times that of the Earth and the first potential extrasolar terrestrial planet to be found. The exoplanet has a very short orbital period, revolving around its host star in about 20 hours.

<span class="mw-page-title-main">CoRoT-1</span> Yellow dwarf star in the constellation Monoceros

CoRoT-1 is a yellow dwarf main sequence star similar to the Sun. The star is located approximately 2,630 light-years away in the constellation of Monoceros. The apparent magnitude of this star is 13.6, which means it is not visible to the naked eye; however, it can be seen through a medium-sized amateur telescope on a clear, dark night. The first exoplanet discovered in the course of the CoRoT mission orbits this star; it is considered to be a "hot Jupiter", and is approximately as massive as the planet Jupiter itself.

HAT-P-8 is a magnitude 10 star located 700 light-years away in Pegasus. It is a F-type star about 28% more massive than the Sun. Two red dwarf companions have been detected around HAT-P-8. The first has a spectral type of M5V and has a mass of 0.22 M. The second is even less massive, at 0.18 M, and its spectral type is M6V.

CoRoT-2 is a yellow dwarf main sequence star a little cooler than the Sun. This star is located approximately 700 light-years away in the constellation of Aquila. The apparent magnitude of this star is 12, which means it is not visible to the naked eye but can be seen with a medium-sized amateur telescope on a clear dark night.

CoRoT-7 is a binary star system.

CoRoT-6 is a magnitude 13.9 star located in the Ophiuchus constellation.

CoRoT-7c is an extrasolar planet which orbits the G-type main sequence star CoRoT-7, located approximately 489 light years away in the constellation Monoceros. It is either a super-Earth or a Neptune-like planet, orbiting at 0.046 AU from the star, taking 3.7 days or 89 hours to make one round trip around the star.

<span class="mw-page-title-main">CoRoT-8b</span> Extrasolar planet in the constellation Aquila

CoRoT-8b is a transiting exoplanet orbiting the K-type main sequence star CoRoT-8 1,050 light years away in the equatorial constellation Aquila. The planet was discovered in April 2010 by the CoRoT telescope.

<span class="mw-page-title-main">CoRoT-16b</span> Extrasolar planet in the constellation Scutum

CoRoT-16b is a transiting exoplanet orbiting the G or K type main sequence star CoRoT-16 2,433 light years away in the southern constellation Scutum. The planet was discovered in June 2011 by the French-led CoRoT mission.

CoRoT-16 is a solitary star located in the equatorial constellation Scutum. With an apparent magnitude of 16, it requires a powerful telescope to be seen, and is located 2,400 light years away based on parallax.

CoRoT-27b is a gas giant exoplanet that orbits a G-type star. Its mass is 10.39 Jupiters, it takes 3.6 days to complete one orbit of its star, and is 0.0476 AU from its star. Its discovery was announced in 2014.

References

  1. P. Bordé, F. Bouchy, M. Deleuil, J. Cabrera, L. Jorda, C. Lovis, S. Csizmadia, S. Aigrain, J. M. Almenara, R. Alonso, M. Auvergne, A. Baglin, P. Barge, W. Benz, A. S. Bonomo, H. Bruntt, L. Carone, S. Carpano, H. Deeg, R. Dvorak, A. Erikson, S. Ferraz-Mello, M. Fridlund, D. Gandolfi, J.-C. Gazzano, M. Gillon, E. Guenther, T. Guillot, P. Guterman, A. Hatzes, M. Havel, G. Hébrard, H. Lammer, A. Léger, M. Mayor, T. Mazeh, C. Moutou, M. Pätzold, F. Pepe, M. Ollivier, D. Queloz, H. Rauer, D. Rouan, B. Samuel, A. Santerne, J.Schneider, B. Tingley, S. Udry, J. Weingrill, G. Wuchterl (2010-08-02). "Transiting exoplanets from the CoRoT space mission". Astronomy and Astrophysics. 520: A66. arXiv: 1008.0325 . Bibcode:2010A&A...520A..66B. doi:10.1051/0004-6361/201014775. S2CID   56357511.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. Bordé, P.; et al. (September 2010). "Transiting exoplanets from the CoRoT space mission. XI. CoRoT-8b: a hot and dense sub-Saturn around a K1 dwarf". Astronomy and Astrophysics. 520: A66. arXiv: 1008.0325 . Bibcode:2010A&A...520A..66B. doi:10.1051/0004-6361/201014775. ISSN   0004-6361. S2CID   56357511.
  3. Raetz, St; Heras, A. M.; Fernández, M.; Casanova, V.; Marka, C. (February 2019). "Transit analysis of the CoRoT-5, CoRoT-8, CoRoT-12, CoRoT-18, CoRoT-20, and CoRoT-27 systems with combined ground- and space-based photometry". Monthly Notices of the Royal Astronomical Society. 483 (1): 824–839. arXiv: 1812.01536 . Bibcode:2019MNRAS.483..824R. doi:10.1093/mnras/sty3085. ISSN   0035-8711.
  4. Bonomo, A. S.; et al. (June 2017). "The GAPS Programme with HARPS-N at TNG . XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets". Astronomy and Astrophysics. 602: A107. arXiv: 1704.00373 . Bibcode:2017A&A...602A.107B. doi:10.1051/0004-6361/201629882. ISSN   0004-6361. S2CID   118923163.