Class | Sorting algorithm |
---|---|
Data structure | Array |
Worst-case performance | |
Best-case performance | |
Average performance | |
Worst-case space complexity | |
Optimal | No |
Cocktail shaker sort, [1] also known as bidirectional bubble sort, [2] cocktail sort, shaker sort (which can also refer to a variant of selection sort), ripple sort, shuffle sort, [3] or shuttle sort, is an extension of bubble sort. The algorithm extends bubble sort by operating in two directions. While it improves on bubble sort by more quickly moving items to the beginning of the list, it provides only marginal performance improvements.
Like most variants of bubble sort, cocktail shaker sort is used primarily as an educational tool. More performant algorithms such as quicksort, merge sort, or timsort are used by the sorting libraries built into popular programming languages such as Python and Java. [4] [5]
The simplest form goes through the whole list each time:
procedure cocktailShakerSort(A : list of sortable items) isdo swapped := false for each i in 0 to length(A) − 1 do:if A[i] > A[i + 1] then// test whether the two elements are in the wrong order swap(A[i], A[i + 1]) // let the two elements change places swapped := true end ifend forif not swapped then// we can exit the outer loop here if no swaps occurred.break do-while loopend if swapped := false for each i in length(A) − 1 to 0 do:if A[i] > A[i + 1] then swap(A[i], A[i + 1]) swapped := true end ifend forwhile swapped // if no elements have been swapped, then the list is sortedend procedure
The first rightward pass will shift the largest element to its correct place at the end, and the following leftward pass will shift the smallest element to its correct place at the beginning. The second complete pass will shift the second largest and second smallest elements to their correct places, and so on. After i passes, the first i and the last i elements in the list are in their correct positions, and do not need to be checked. By shortening the part of the list that is sorted each time, the number of operations can be halved (see bubble sort).
This is an example of the algorithm in MATLAB/OCTAVE with the optimization of remembering the last swap index and updating the bounds.
functionA=cocktailShakerSort(A)% `beginIdx` and `endIdx` marks the first and last index to checkbeginIdx=1;endIdx=length(A)-1;whilebeginIdx<=endIdxnewBeginIdx=endIdx;newEndIdx=beginIdx;forii=beginIdx:endIdxifA(ii)>A(ii+1)[A(ii+1),A(ii)]=deal(A(ii),A(ii+1));newEndIdx=ii;endend% decreases `endIdx` because the elements after `newEndIdx` are in correct orderendIdx=newEndIdx-1;forii=endIdx:-1:beginIdxifA(ii)>A(ii+1)[A(ii+1),A(ii)]=deal(A(ii),A(ii+1));newBeginIdx=ii;endend% increases `beginIdx` because the elements before `newBeginIdx` are in correct orderbeginIdx=newBeginIdx+1;endend
Cocktail shaker sort is a slight variation of bubble sort. [1] It differs in that instead of repeatedly passing through the list from bottom to top, it passes alternately from bottom to top and then from top to bottom. It can achieve slightly better performance than a standard bubble sort. The reason for this is that bubble sort only passes through the list in one direction and therefore can only move items backward one step each iteration.
An example of a list that proves this point is the list (2,3,4,5,1), which would only need to go through one pass of cocktail sort to become sorted, but if using an ascending bubble sort would take four passes. However one cocktail sort pass should be counted as two bubble sort passes. Typically cocktail sort is less than two times faster than bubble sort.
Another optimization can be that the algorithm remembers where the last actual swap has been done. In the next iteration, there will be no swaps beyond this limit and the algorithm has shorter passes. As the cocktail shaker sort goes bidirectionally, the range of possible swaps, which is the range to be tested, will reduce per pass, thus reducing the overall running time slightly.
The complexity of the cocktail shaker sort in big O notation is for both the worst case and the average case, but it becomes closer to if the list is mostly ordered before applying the sorting algorithm. For example, if every element is at a position that differs by at most k (k ≥ 1) from the position it is going to end up in, the complexity of cocktail shaker sort becomes
The cocktail shaker sort is also briefly discussed in the book The Art of Computer Programming , along with similar refinements of bubble sort. In conclusion, Knuth states about bubble sort and its improvements:
But none of these refinements leads to an algorithm better than straight insertion [that is, insertion sort]; and we already know that straight insertion isn't suitable for large N. [...] In short, the bubble sort seems to have nothing to recommend it, except a catchy name and the fact that it leads to some interesting theoretical problems.
— D. E. Knuth [1]
In computer science, binary search, also known as half-interval search, logarithmic search, or binary chop, is a search algorithm that finds the position of a target value within a sorted array. Binary search compares the target value to the middle element of the array. If they are not equal, the half in which the target cannot lie is eliminated and the search continues on the remaining half, again taking the middle element to compare to the target value, and repeating this until the target value is found. If the search ends with the remaining half being empty, the target is not in the array.
Insertion sort is a simple sorting algorithm that builds the final sorted array (or list) one item at a time by comparisons. It is much less efficient on large lists than more advanced algorithms such as quicksort, heapsort, or merge sort. However, insertion sort provides several advantages:
In computer science, merge sort is an efficient, general-purpose, and comparison-based sorting algorithm. Most implementations produce a stable sort, which means that the relative order of equal elements is the same in the input and output. Merge sort is a divide-and-conquer algorithm that was invented by John von Neumann in 1945. A detailed description and analysis of bottom-up merge sort appeared in a report by Goldstine and von Neumann as early as 1948.
In computer science, radix sort is a non-comparative sorting algorithm. It avoids comparison by creating and distributing elements into buckets according to their radix. For elements with more than one significant digit, this bucketing process is repeated for each digit, while preserving the ordering of the prior step, until all digits have been considered. For this reason, radix sort has also been called bucket sort and digital sort.
In computer science, a sorting algorithm is an algorithm that puts elements of a list into an order. The most frequently used orders are numerical order and lexicographical order, and either ascending or descending. Efficient sorting is important for optimizing the efficiency of other algorithms that require input data to be in sorted lists. Sorting is also often useful for canonicalizing data and for producing human-readable output.
In computer science, selection sort is an in-place comparison sorting algorithm. It has an O(n2) time complexity, which makes it inefficient on large lists, and generally performs worse than the similar insertion sort. Selection sort is noted for its simplicity and has performance advantages over more complicated algorithms in certain situations, particularly where auxiliary memory is limited.
A binary heap is a heap data structure that takes the form of a binary tree. Binary heaps are a common way of implementing priority queues. The binary heap was introduced by J. W. J. Williams in 1964, as a data structure for heapsort.
Shellsort, also known as Shell sort or Shell's method, is an in-place comparison sort. It can be seen as either a generalization of sorting by exchange or sorting by insertion. The method starts by sorting pairs of elements far apart from each other, then progressively reducing the gap between elements to be compared. By starting with far apart elements, it can move some out-of-place elements into position faster than a simple nearest neighbor exchange. Donald Shell published the first version of this sort in 1959. The running time of Shellsort is heavily dependent on the gap sequence it uses. For many practical variants, determining their time complexity remains an open problem.
Comb sort is a relatively simple sorting algorithm originally designed by Włodzimierz Dobosiewicz and Artur Borowy in 1980, later rediscovered by Stephen Lacey and Richard Box in 1991. Comb sort improves on bubble sort in the same way that Shellsort improves on insertion sort.
Introsort or introspective sort is a hybrid sorting algorithm that provides both fast average performance and (asymptotically) optimal worst-case performance. It begins with quicksort, it switches to heapsort when the recursion depth exceeds a level based on (the logarithm of) the number of elements being sorted and it switches to insertion sort when the number of elements is below some threshold. This combines the good parts of the three algorithms, with practical performance comparable to quicksort on typical data sets and worst-case O(n log n) runtime due to the heap sort. Since the three algorithms it uses are comparison sorts, it is also a comparison sort.
In computer science, comparator networks are abstract devices built up of a fixed number of "wires", carrying values, and comparator modules that connect pairs of wires, swapping the values on the wires if they are not in a desired order. Such networks are typically designed to perform sorting on fixed numbers of values, in which case they are called sorting networks.
Library sort or gapped insertion sort is a sorting algorithm that uses an insertion sort, but with gaps in the array to accelerate subsequent insertions. The name comes from an analogy:
Suppose a librarian were to store their books alphabetically on a long shelf, starting with the As at the left end, and continuing to the right along the shelf with no spaces between the books until the end of the Zs. If the librarian acquired a new book that belongs to the B section, once they find the correct space in the B section, they will have to move every book over, from the middle of the Bs all the way down to the Zs in order to make room for the new book. This is an insertion sort. However, if they were to leave a space after every letter, as long as there was still space after B, they would only have to move a few books to make room for the new one. This is the basic principle of the Library Sort.
A comparison sort is a type of sorting algorithm that only reads the list elements through a single abstract comparison operation that determines which of two elements should occur first in the final sorted list. The only requirement is that the operator forms a total preorder over the data, with:
Quicksort is an efficient, general-purpose sorting algorithm. Quicksort was developed by British computer scientist Tony Hoare in 1959 and published in 1961. It is still a commonly used algorithm for sorting. Overall, it is slightly faster than merge sort and heapsort for randomized data, particularly on larger distributions.
In computing, an odd–even sort or odd–even transposition sort is a relatively simple sorting algorithm, developed originally for use on parallel processors with local interconnections. It is a comparison sort related to bubble sort, with which it shares many characteristics. It functions by comparing all odd/even indexed pairs of adjacent elements in the list and, if a pair is in the wrong order the elements are switched. The next step repeats this for even/odd indexed pairs. Then it alternates between odd/even and even/odd steps until the list is sorted.
The Fisher–Yates shuffle is an algorithm for shuffling a finite sequence. The algorithm takes a list of all the elements of the sequence, and continually determines the next element in the shuffled sequence by randomly drawing an element from the list until no elements remain. The algorithm produces an unbiased permutation: every permutation is equally likely. The modern version of the algorithm takes time proportional to the number of items being shuffled and shuffles them in place.
Timsort is a hybrid, stable sorting algorithm, derived from merge sort and insertion sort, designed to perform well on many kinds of real-world data. It was implemented by Tim Peters in 2002 for use in the Python programming language. The algorithm finds subsequences of the data that are already ordered (runs) and uses them to sort the remainder more efficiently. This is done by merging runs until certain criteria are fulfilled. Timsort has been Python's standard sorting algorithm since version 2.3. It is also used to sort arrays of non-primitive type in Java SE 7, on the Android platform, in GNU Octave, on V8, Swift, and Rust.
Bubble sort, sometimes referred to as sinking sort, is a simple sorting algorithm that repeatedly steps through the input list element by element, comparing the current element with the one after it, swapping their values if needed. These passes through the list are repeated until no swaps had to be performed during a pass, meaning that the list has become fully sorted. The algorithm, which is a comparison sort, is named for the way the larger elements "bubble" up to the top of the list.
ProxmapSort, or Proxmap sort, is a sorting algorithm that works by partitioning an array of data items, or keys, into a number of "subarrays". The name is short for computing a "proximity map," which indicates for each key K the beginning of a subarray where K will reside in the final sorted order. Keys are placed into each subarray using insertion sort. If keys are "well distributed" among the subarrays, sorting occurs in linear time. The computational complexity estimates involve the number of subarrays and the proximity mapping function, the "map key," used. It is a form of bucket and radix sort.
Interpolation sort is a kind of bucket sort. It uses an interpolation formula to assign data to the bucket. A general interpolation formula is:
{{cite book}}
: |journal=
ignored (help)