This article is an orphan, as no other articles link to it . Please introduce links to this page from related articles ; try the Find link tool for suggestions. (August 2024) |
In geometry, a common net is a net that can be folded onto several polyhedra. To be a valid common net, there shouldn't exist any non-overlapping sides and the resulting polyhedra must be connected through faces. The research of examples of this particular nets dates back to the end of the 20th century, despite that, not many examples have been found. Two classes, however, have been deeply explored, regular polyhedra and cuboids. The search of common nets is usually made by either extensive search or the overlapping of nets that tile the plane.
Demaine et al. proved that every convex polyhedron can be unfolded and refolded to a different convex polyhedron. [1]
There can be types of common nets, strict edge unfoldings and free unfoldings. Strict edge unfoldings refers to common nets where the different polyhedra that can be folded use the same folds, that is, to fold one polyhedra from the net of another there is no need to make new folds. Free unfoldings refer to the opposite case, when we can create as many folds as needed to enable the folding of different polyhedra.
Multiplicity of common nets refers to the number of common nets for the same set of polyhedra.
Open problem 25.31 in Geometric Folding Algorithm by Rourke and Demaine reads:
"Can any Platonic solid be cut open and unfolded to a polygon that may be refolded to a different Platonic solid? For example, may a cube be so dissected to a tetrahedron?" [2]
This problem has been partially solved by Shirakawa et al. with a fractal net that is conjectured to fold to a tetrahedron and a cube.
Multiplicity | Polyhedra 1 | Polyhedra 2 | Reference |
---|---|---|---|
Tetrahedron | Cube | [3] | |
Tetrahedron | Cuboid (1x1x1.232) | [4] | |
87 | Tetrahedron | Jonhson Solid J17 | [5] |
37 | Tetrahedron | Jonhson Solid J84 | [5] |
Cube | Tetramonohedron | [6] | |
Cube | 1x1x7 and 1x3x3 Cuboids | [7] | |
Cube | Octahedron (non-Regular) | [3] | |
Octahedron | Tetramonohedron | [8] | |
Octahedron | tetramonohedron | [6] | |
Octahedron | Tritetrahedron | [9] | |
Icosahedron | Tetramonohedron | [6] |
Common nets of cuboids have been deeply researched, mainly by Uehara and coworkers. To the moment, common nets of up to three cuboids have been found, It has, however, been proven that there exist infinitely many examples of nets that can be folded into more than one polyhedra. [10]
Area | Multiplicity | Cuboid 1 | Cuboid 2 | Cuboid 3 | Reference |
---|---|---|---|---|---|
22 | 6495 | 1x1x5 | 1x2x3 | [11] | |
22 | 3 | 1x1x5 | 1x2x3 | 0x1x11 | [12] |
28 | 1x2x4 | √2x√2x3√2 | [12] | ||
30 | 30 | 1x1x7 | 1x3x3 | √5x√5x√5 | [13] |
30 | 1080 | 1x1x7 | 1x3x3 | [13] | |
34 | 11291 | 1x1x8 | 1x2x5 | [11] | |
38 | 2334 | 1x1x9 | 1x3x4 | [11] | |
46 | 568 | 1x1x11 | 1x3x5 | [11] | |
46 | 92 | 1x2x7 | 1x3x5 | [11] | |
54 | 1735 | 1x1x13 | 3x3x3 | [11] | |
54 | 1806 | 1x1x13 | 1x3x6 | [11] | |
54 | 387 | 1x3x6 | 3x3x3 | [11] | |
58 | 37 | 1x1x14 | 1x4x5 | [11] | |
62 | 5 | 1x3x7 | 2x3x5 | [11] | |
64 | 50 | 2x2x7 | 1x2x10 | [11] | |
64 | 6 | 2x2x7 | 2x4x4 | [11] | |
70 | 3 | 1x1x17 | 1x5x5 | [11] | |
70 | 11 | 1x2x11 | 1x3x8 | [11] | |
88 | 218 | 2x2x10 | 1x4x8 | [11] | |
88 | 86 | 2x2x10 | 2x4x6 | [11] | |
160 | 4x4x8 | √10x2√10x2√10 | [12] | ||
532 | 7x8x14 | 2x4x43 | 2x13x16 | [14] | |
1792 | 7x8x56 | 7x14x38 | 2x13x58 | [14] |
*Non-orthogonal foldings
The first cases of common nets of polycubes found was the work by George Miller, with a later contribution of Donald Knuth, that culminated in the Cubigami puzzle [15] . It’s composed of a net that can fold to all 7 tree-like tetracubes. All possible common nets up to pentacubes were found. All the nets follow strict orthogonal folding despite still being considered free unfoldings.
Area | Multiplicity | Polyhedra | Reference |
---|---|---|---|
14 | 29026 | All tricubes | [16] |
14 | All tricubes | [11] | |
18 | 68 | All tree-like tetracubes [15] | [17] |
22 | 23 pentacubes | [18] | |
22 | 3 | 22 tree-like pentacubes | [18] |
22 | 1 | Non-planar pentacubes | [18] |
3D Simplicial polytope
Area | Multiplicity | Polyhedra | Reference |
---|---|---|---|
8 | 1 | Both 8 face deltahedra | [9] |
10 | 4 | 7-vertex deltahedra | [19] |
In geometry, a cube is a three-dimensional solid object bounded by six square faces. It has twelve edges and eight vertices. It can be represented as the rectangular cuboid with six faces are all squares, and parallelepiped with the edges are all equal. It is an example of many type of solids: Platonic solid, regular polyhedron, parallelohedron, zonohedron, and plesiohedron. The dual polyhedron of a cube is the regular octahedron.
In geometry, a polyhedron is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices.
The discipline of origami or paper folding has received a considerable amount of mathematical study. Fields of interest include a given paper model's flat-foldability, and the use of paper folds to solve up-to cubic mathematical equations.
In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry. In particular, all its elements or j-faces — cells, faces and so on — are also transitive on the symmetries of the polytope, and are themselves regular polytopes of dimension j≤ n.
A polycube is a solid figure formed by joining one or more equal cubes face to face. Polycubes are the three-dimensional analogues of the planar polyominoes. The Soma cube, the Bedlam cube, the Diabolical cube, the Slothouber–Graatsma puzzle, and the Conway puzzle are examples of packing problems based on polycubes.
Erik D. Demaine is a Canadian-American professor of computer science at the Massachusetts Institute of Technology and a former child prodigy.
In geometry, a net of a polyhedron is an arrangement of non-overlapping edge-joined polygons in the plane which can be folded to become the faces of the polyhedron. Polyhedral nets are a useful aid to the study of polyhedra and solid geometry in general, as they allow for physical models of polyhedra to be constructed from material such as thin cardboard.
In geometry, a disphenoid is a tetrahedron whose four faces are congruent acute-angled triangles. It can also be described as a tetrahedron in which every two edges that are opposite each other have equal lengths. Other names for the same shape are isotetrahedron, sphenoid, bisphenoid, isosceles tetrahedron, equifacial tetrahedron, almost regular tetrahedron, and tetramonohedron.
In differential geometry, the cut locus of a point p on a manifold is the closure of the set of all other points on the manifold that are connected to p by two or more distinct shortest geodesics. More generally, the cut locus of a closed set X on the manifold is the closure of the set of all other points on the manifold connected to X by two or more distinct shortest geodesics.
Joseph O'Rourke is the Spencer T. and Ann W. Olin Professor of Computer Science at Smith College and the founding chair of the Smith computer science department. His main research interest is computational geometry.
Rigid origami is a branch of origami which is concerned with folding structures using flat rigid sheets joined by hinges. That is, unlike in traditional origami, the panels of the paper cannot be bent during the folding process; they must remain flat at all times, and the paper only folded along its hinges. A rigid origami model would still be foldable if it was made from glass sheets with hinges in place of its crease lines.
In the mathematics of paper folding, map folding and stamp folding are two problems of counting the number of ways that a piece of paper can be folded. In the stamp folding problem, the paper is a strip of stamps with creases between them, and the folds must lie on the creases. In the map folding problem, the paper is a map, divided by creases into rectangles, and the folds must again lie only along these creases.
The Alexandrov uniqueness theorem is a rigidity theorem in mathematics, describing three-dimensional convex polyhedra in terms of the distances between points on their surfaces. It implies that convex polyhedra with distinct shapes from each other also have distinct metric spaces of surface distances, and it characterizes the metric spaces that come from the surface distances on polyhedra. It is named after Soviet mathematician Aleksandr Danilovich Aleksandrov, who published it in the 1940s.
Stefan Langerman false Swarzberg is a Belgian computer scientist and mathematician whose research topics include computational geometry, data structures, and recreational mathematics. He is professor and co-head of the algorithms research group at the Université libre de Bruxelles (ULB) with Jean Cardinal. He is a director of research for the Belgian Fonds de la Recherche Scientifique (FRS–FNRS).
In geometric graph theory, and the theory of structural rigidity, a parallel redrawing of a graph drawing with straight edges in the Euclidean plane or higher-dimensional Euclidean space is another drawing of the same graph such that all edges of the second drawing are parallel to their corresponding edges in the first drawing. A parallel morph of a graph is a continuous family of drawings, all parallel redrawings of each other.
The spider and the fly problem is a recreational mathematics problem with an unintuitive solution, asking for a shortest path or geodesic between two points on the surface of a cuboid. It was originally posed by Henry Dudeney.
Geometric Folding Algorithms: Linkages, Origami, Polyhedra is a monograph on the mathematics and computational geometry of mechanical linkages, paper folding, and polyhedral nets, by Erik Demaine and Joseph O'Rourke. It was published in 2007 by Cambridge University Press (ISBN 978-0-521-85757-4). A Japanese-language translation by Ryuhei Uehara was published in 2009 by the Modern Science Company (ISBN 978-4-7649-0377-7).
In computational geometry, the star unfolding of a convex polyhedron is a net obtained by cutting the polyhedron along geodesics through its faces. It has also been called the inward layout of the polyhedron, or the Alexandrov unfolding after Aleksandr Danilovich Aleksandrov, who first considered it.
In the geometry of convex polyhedra, blooming or continuous blooming is a continuous three-dimensional motion of the surface of the polyhedron, cut to form a polyhedral net, from the polyhedron into a flat and non-self-overlapping placement of the net in a plane. As in rigid origami, the polygons of the net must remain individually flat throughout the motion, and are not allowed to intersect or cross through each other. A blooming, reversed to go from the flat net to a polyhedron, can be thought of intuitively as a way to fold the polyhedron from a paper net without bending the paper except at its designated creases.
In computational geometry, the source unfolding of a convex polyhedron is a net obtained by cutting the polyhedron along the cut locus of a point on the surface of the polyhedron. The cut locus of a point consists of all points on the surface that have two or more shortest geodesics to . For every convex polyhedron, and every choice of the point on its surface, cutting the polyhedron on the cut locus will produce a result that can be unfolded into a flat plane, producing the source unfolding. The resulting net may, however, cut across some of the faces of the polyhedron rather than only cutting along its edges.
{{cite book}}
: CS1 maint: date and year (link)