Creontiades dilutus

Last updated

Green mirid
Miridonbean.jpg
green mirid adult
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Hemiptera
Suborder: Heteroptera
Family: Miridae
Genus: Creontiades
Species:
C. dilutus
Binomial name
Creontiades dilutus
Stål (1859)

Creontiades dilutus, commonly known as the green mirid, is a member of the bug family Miridae (the largest bug family with over 10,000 species). This insect is considered a "generalist" feeding on over 100 plant species, and is also a major economic pest on several important agricultural crops.

Contents

Distribution

The green mirid is endemic to Australia, and found throughout the continent including in Tasmania. [1] This insect is found throughout the hot and arid interior of the continent (see figure below) and is particularly abundant in these regions during southern hemisphere winter (especially if there has been higher than average winter rain). In summer months the interior of the country is very hot and dry and there are very few plants available for green mirids to feed on, a few individuals do persist in this region during summer months but not many. In the Eastern cropping regions the winter months are too cold to support growth and development of green mirids, some do survive through the winter in these regions, but again in very low numbers. In the summer conditions in the Eastern cropping regions are ideal for mirid growth and development and large populations van build up rapidly. Anecdotal evidence indicates that mirids will often appear in large numbers in cropping regions associated with storm fronts or weather events that originated in the inland areas. Genetic evidence supports this anecdotal evidence and shows that inland populations and coastal populations of these insects are genetically connected. [2]

AustraliaMapArid&Cotton.jpg

Host plant relationships

Creontiades dilutus is highly polyphagous having been recorded from over 100 host plants (most in Fabaceae) [3] and is therefore considered a generalist insect herbivore, it does not use all host plants equally, however. In its natural environment (the arid interior of Australia) it is found in much higher numbers on two plants in the genus Cullen, Cu. cinereum and Cu. Australasicum, it is also found more regularly on these two plant species than any other, leading to the designation of these plant species as primary hosts. [4]

Although green mirids are now the primary pest of cotton this plant is a relatively bad host for mirids, low densities of green mirids are able to cause economic damage but high numbers are never found on Gossypium hirsutum . They do feed on and cause damage to many other agricultural crops, including soybean, green beans, stone fruits, grapes etc. [5] [6] In agricultural areas the highest densities are found in Lucerne and this observation lead to the suggestion that Lucerne could be grown next to cotton as a trap crop for mirids. [7] Genetic tests of the gut contents of mirids in adjacent Cotton and Lucerne patches shows that these insects regularly move between these two plants and therefore Lucerne is more likely to provide higher numbers in cotton rather than reduce them [8]

Economic importance

The green mirid is currently the most serious insect pest of cotton in Australia, in that it is now the primary target of pesticide application in this crop. Prior to the introduction of transgenic cotton containing (insecticidal) Bt toxins green mirids were incidentally controlled by broad spectrum insecticides used to control Helicoverpa armigera . Currently pesticide use is much reduced because Bt cotton controls Helicoverpa armigera , but hemipterans are not affected by Bt toxins, and now mirids are the main target of pesticide application in cotton. This pattern of the emergence of sucking pests (heteroptera: true bugs) as the major target of insecticide control following the uptake of Bt cotton has been replicated in other countries but with different mirid species [9] [10] [11]

Related Research Articles

<i>Bacillus thuringiensis</i> Species of bacteria used as an insecticide

Bacillus thuringiensis is a gram-positive, soil-dwelling bacterium, the most commonly used biological pesticide worldwide. B. thuringiensis also occurs naturally in the gut of caterpillars of various types of moths and butterflies, as well on leaf surfaces, aquatic environments, animal feces, insect-rich environments, and flour mills and grain-storage facilities. It has also been observed to parasitize other moths such as Cadra calidella—in laboratory experiments working with C. calidella, many of the moths were diseased due to this parasite.

<span class="mw-page-title-main">Insecticide</span> Pesticide used against insects

Insecticides are pesticides used to kill insects. They include ovicides and larvicides used against insect eggs and larvae, respectively. Insecticides are used in agriculture, medicine, industry and by consumers. Insecticides are claimed to be a major factor behind the increase in the 20th-century's agricultural productivity. Nearly all insecticides have the potential to significantly alter ecosystems; many are toxic to humans and/or animals; some become concentrated as they spread along the food chain.

<span class="mw-page-title-main">Aphid</span> Superfamily of insects

Aphids are small sap-sucking insects and members of the superfamily Aphidoidea. Common names include greenfly and blackfly, although individuals within a species can vary widely in color. The group includes the fluffy white woolly aphids. A typical life cycle involves flightless females giving live birth to female nymphs—who may also be already pregnant, an adaptation scientists call telescoping generations—without the involvement of males. Maturing rapidly, females breed profusely so that the number of these insects multiplies quickly. Winged females may develop later in the season, allowing the insects to colonize new plants. In temperate regions, a phase of sexual reproduction occurs in the autumn, with the insects often overwintering as eggs.

<span class="mw-page-title-main">Hemiptera</span> Order of insects often called true bugs

Hemiptera is an order of insects, commonly called true bugs, comprising over 80,000 species within groups such as the cicadas, aphids, planthoppers, leafhoppers, assassin bugs, bed bugs, and shield bugs. They range in size from 1 mm (0.04 in) to around 15 cm (6 in), and share a common arrangement of piercing-sucking mouthparts. The name "true bugs" is often limited to the suborder Heteroptera.

<span class="mw-page-title-main">Pesticide resistance</span> Decreased effectiveness of a pesticide on a pest

Pesticide resistance describes the decreased susceptibility of a pest population to a pesticide that was previously effective at controlling the pest. Pest species evolve pesticide resistance via natural selection: the most resistant specimens survive and pass on their acquired heritable changes traits to their offspring. If a pest has resistance then that will reduce the pesticide's efficacy – efficacy and resistance are inversely related.

<span class="mw-page-title-main">Whitefly</span> Family of insects

Whiteflies are Hemipterans that typically feed on the undersides of plant leaves. They comprise the family Aleyrodidae, the only family in the superfamily Aleyrodoidea. More than 1550 species have been described.

<i>Beauveria bassiana</i> Species of fungus

Beauveria bassiana is a fungus that grows naturally in soils throughout the world and acts as a parasite on various arthropod species, causing white muscardine disease; it thus belongs to the group of entomopathogenic fungi. It is used as a biological insecticide to control a number of pests, including termites, thrips, whiteflies, aphids and various beetles. Its use in the control of bedbugs and malaria-transmitting mosquitos is under investigation.

<span class="mw-page-title-main">Miridae</span> Family of true bugs

The Miridae are a large and diverse insect family at one time known by the taxonomic synonym Capsidae. Species in the family may be referred to as capsid bugs or "mirid bugs". Common names include plant bugs, leaf bugs, and grass bugs. It is the largest family of true bugs belonging to the suborder Heteroptera; it includes over 10,000 known species, and new ones are being described constantly. Most widely known mirids are species that are notorious agricultural pests that pierce plant tissues, feed on the sap, and sometimes transmit viral plant diseases. Some species however, are predatory.

<span class="mw-page-title-main">Brown planthopper</span> Species of planthopper

The brown planthopper (BPH), Nilaparvata lugens (Stål) is a planthopper species that feeds on rice plants. These insects are among the most important pests of rice, which is the major staple crop for about half the world's population. They damage rice directly through feeding and also by transmitting two viruses, rice ragged stunt virus and rice grassy stunt virus. Up to 60% yield loss is common in susceptible rice cultivars attacked by the insect. The BPH is distributed throughout Australia, Bangladesh, Bhutan, Burma (Myanmar), Cambodia, China, Fiji, India, Indonesia, Japan, North and South Korea, Laos, Malaysia, India, Nepal, Pakistan, Papua New Guinea, Philippines, Sri Lanka, Taiwan, Thailand, and Vietnam. Their alternative host plant other than rice is Leersia hexandra.

<span class="mw-page-title-main">Tarnished plant bug</span> Species of true bug

The tarnished plant bug (TPB), Lygus lineolaris, is a species of plant-feeding insect in the family Miridae. It has piercing-sucking mouthparts and has become a serious pest on small fruits and vegetables in North America. It is considered a highly polyphagous species and feeds on over half of all commercially grown crop plants, but favors cotton, alfalfa, beans, stone fruits, and conifer seedlings. A study done in southwestern Quebec, Canada has investigated the presence of L. lineolaris in a commercial vineyard. This study also indicated that weeds that grow from cultivation of crops serve as an important food source for L. lineolaris. This insect can be found across North America, from northern Canada to southern Mexico. Adults grow up to 6.5 mm in length, and are brown with accents of yellow, orange or red, with a light-colored "V" on the back (dorsal). The genome has recently been sequenced for the first time.

Bt cotton is a genetically modified pest resistant plant cotton variety that produces an insecticide to combat bollworm.

<i>Helicoverpa armigera</i> Species of moth

Helicoverpa armigera is a species of Lepidoptera in the family Noctuidae. It is known as the cotton bollworm, corn earworm, Old World (African) bollworm, or scarce bordered straw. The larvae feed on a wide range of plants, including many important cultivated crops. It is a major pest in cotton and one of the most polyphagous and cosmopolitan pest species. It should not be confused with the similarly named larva of the related species Helicoverpa zea.

<span class="mw-page-title-main">Green stink bug</span> Species of true bug

The green stink bug or green soldier bug is a stink bug of the family Pentatomidae.

<span class="mw-page-title-main">Brown marmorated stink bug</span> Species of Pentatomid insect

The brown marmorated stink bug is an insect in the family Pentatomidae, native to China, Japan, Korea and other Asian regions. In September 1998 it was collected in Allentown, Pennsylvania, where it is believed to have been accidentally introduced. The nymphs and adults of the brown marmorated stink bug feed on over 100 species of plants, including many agricultural crops, and by 2010–11 had become a season-long pest in orchards in the Eastern United States. In 2010, in the Mid-Atlantic United States, $37 million in apple crops were lost, and some stone fruit growers lost more than 90% of their crops. Since the 2010s, the bug has spread to the nation of Georgia and Turkey and caused extensive damage to hazelnut production. It is now established in many parts of North America, and has recently become established in Europe and South America.

A trap crop is a plant that attracts agricultural pests, usually insects, away from nearby crops. This form of companion planting can save the main crop from decimation by pests without the use of pesticides.[1] A trap crop is used for attracting the insect and pests away from the field.[1] Many trap crops have successfully diverted pests from focal crops in small scale greenhouse, garden and field experiments; a small portion of these plants have been shown to reduce pest damage at larger commercial scales. A common explanation for reported trap cropping failures, is that attractive trap plants only protect nearby plants if the insects do not move back into the main crop. In a review of 100 trap cropping examples in 2006, only 10 trap crops were classified as successful at a commercial scale, and in all successful cases, trap cropping was supplemented with management practices that specifically limited insect dispersal from the trap crop back into the main crop.

<i>Adelphocoris lineolatus</i> Species of true bug

Adelphocoris lineolatus, is commonly known as the Lucerne bug or the alfalfa plant bug, and belongs to the family Miridae. It is an agricultural pest causing vast amounts of damage to numerous crops, but primarily to alfalfa crops around the globe.

<i>Myzus persicae</i> Aphid of peach, potato, other crops

Myzus persicae, known as the green peach aphid, greenfly, or the peach-potato aphid, is a small green aphid belonging to the order Hemiptera. It is the most significant aphid pest of peach trees, causing decreased growth, shrivelling of the leaves and the death of various tissues. It also acts as a vector for the transport of plant viruses such as cucumber mosaic virus (CMV), potato virus Y (PVY) and tobacco etch virus (TEV). Potato virus Y and potato leafroll virus can be passed to members of the nightshade/potato family (Solanaceae), and various mosaic viruses to many other food crops.

<i>Stenotus binotatus</i> Species of true bug

Stenotus binotatus is a species of plant bug, originally from Europe, but now also established across North America and New Zealand. It is 6–7 mm (0.24–0.28 in) long, yellowish, with darker markings on the pronotum and forewings. It feeds on various grasses, and can be a pest of crops such as wheat.

The agriculture industry in Puerto Rico constitutes over $800 million or about 0.62% of the island's gross domestic product (GDP) in 2020. Currently the sector accounts for 15% of the food consumed locally. Experts from the University of Puerto Rico argued that these crops could cover approximately 30% of the local demand, particularly that of smaller vegetables such as tomatoes, lettuce, etc. and several kinds of tubers that are currently being imported. The existence of a thriving agricultural economy has been prevented due to a shift in priorities towards industrialization, bureaucratization, mismanagement of terrains, lack of alternative methods and a deficient workforce. Its geographical location within the Caribbean exacerbates these issues, making the scarce existing crops propense to the devastating effects of Atlantic hurricanes.

Dicyphus hesperus is a species of true bug in the family Miridae. It is a generalist predator of other insects and also feeds on plant tissues. It is native to North America and has been used there in biological control of agricultural pests, especially whitefly on tomatoes.

References

  1. Australia, Atlas of Living. "Creontiades dilutus : Green Mirid | Atlas of Living Australia". bie.ala.org.au. Retrieved 2017-02-28.
  2. Hereward, J. P.; Walter, G. H.; DeBarro, P. J.; Lowe, A. J.; Riginos, C. (2013-04-01). "Gene flow in the green mirid, Creontiades dilutus (Hemiptera: Miridae), across arid and agricultural environments with different host plant species". Ecology and Evolution. 3 (4): 807–821. doi:10.1002/ece3.510. ISSN   2045-7758. PMC   3631396 . PMID   23610626.
  3. Hereward, James P.; Walter, Gimme H. (2012-09-19). "Molecular Interrogation of the Feeding Behaviour of Field Captured Individual Insects for Interpretation of Multiple Host Plant Use". PLOS ONE. 7 (9): e44435. Bibcode:2012PLoSO...744435H. doi: 10.1371/journal.pone.0044435 . ISSN   1932-6203. PMC   3446930 . PMID   23028538.
  4. Hereward, James P.; Walter, Gimme H. (2012). "Molecular Interrogation of the Feeding Behaviour of Field Captured Individual Insects for Interpretation of Multiple Host Plant Use". PLOS ONE. 7 (9): e44435. Bibcode:2012PLoSO...744435H. doi: 10.1371/journal.pone.0044435 . ISSN   1932-6203. PMC   3446930 . PMID   23028538.
  5. "Mirids, green, brown and crop". www.daf.qld.gov.au. Archived from the original on 2017-03-01. Retrieved 2017-02-28.
  6. Malipatil, M. B.; Cassis, G. (1997-02-01). "Taxonomic Review of Creontiades Distant in Australia (Hemiptera: Miridae: Mirinae)". Australian Journal of Entomology. 36 (1): 1–13. doi:10.1111/j.1440-6055.1997.tb01422.x. ISSN   1440-6055.
  7. Mensah, R. K.; Khan, M. (1997-01-01). "Use of Medicago sativa (L.) interplantings/trap crops in the management of the green mirid, Creontiades dilutus (Stal) in commercial cotton in Australia". International Journal of Pest Management. 43 (3): 197–202. doi:10.1080/096708797228681. ISSN   0967-0874.
  8. Hereward, James P.; DeBarro, Paul J.; Walter, Gimme H. (2013-10-01). "Resolving multiple host use of an emergent pest of cotton with microsatellite data and chloroplast markers (Creontiades dilutus Stål; Hemiptera, Miridae)". Bulletin of Entomological Research. 103 (5): 611–618. doi:10.1017/S0007485313000291. ISSN   0007-4853. PMID   23702301. S2CID   2464582.
  9. Coleman, R. J.; Hereward, J. P.; De Barro, P. J.; Frohlich, D. R.; Adamczyk, J. J.; Goolsby, J. A. (2008-06-01). "Molecular Comparison of Creontiades Plant Bugs from South Texas and Australia". Southwestern Entomologist. 33 (2): 111–117. doi:10.3958/0147-1724-33.2.111. ISSN   0147-1724. S2CID   86002068.
  10. Gross, Kevin; Rosenheim, Jay A. (2011-10-01). "Quantifying secondary pest outbreaks in cotton and their monetary cost with causal-inference statistics". Ecological Applications. 21 (7): 2770–2780. doi:10.1890/11-0118.1. ISSN   1051-0761. PMID   22073658. S2CID   24633311.
  11. Lu, Yanhui; Wu, Kongming; Jiang, Yuying; Xia, Bing; Li, Ping; Feng, Hongqiang; Wyckhuys, Kris A. G.; Guo, Yuyuan (2010-05-28). "Mirid Bug Outbreaks in Multiple Crops Correlated with Wide-Scale Adoption of Bt Cotton in China". Science. 328 (5982): 1151–1154. Bibcode:2010Sci...328.1151L. doi: 10.1126/science.1187881 . ISSN   0036-8075. PMID   20466880. S2CID   2093962.