Crossed pentagrammic cupola

Last updated
Crossed pentagrammic cupola
Crossed pentagrammic cupola.png
Type Johnson isomorph
Cupola
Faces 5 triangles
5 squares
1 pentagram
1 decagram
Edges 25
Vertices 15
Vertex configuration 5+5(3.4.10/3)
5(3.4.5/3.4)
Schläfli symbol {5/3} || t{5/3}
Symmetry group C5v, [5], (*55)
Rotation group C5, [5]+, (55)
Dual polyhedron -

In geometry, the crossed pentagrammic cupola is one of the nonconvex Johnson solid isomorphs, being topologically identical to the convex pentagonal cupola. It can be obtained as a slice of the great rhombicosidodecahedron or quasirhombicosidodecahedron. As in all cupolae, the base polygon has twice as many edges and vertices as the top; in this case the base polygon is a decagram.

Contents

It may be seen as a cupola with a retrograde pentagrammic base, so that the squares and triangles connect across the bases in the opposite way to the pentagrammic cuploid, hence intersecting each other more deeply.

n / d4578
3 Crossed square cupola.png
{4/3}
Crossed pentagrammic cupola.png
{5/3}
Heptagrammic cupola.png
{7/3}
Octagrammic cupola.png
{8/3}
5 Crossed heptagrammic cupola.png
{7/5}
Crossed octagrammic cupola.png
{8/5}

The crossed pentagonal cupola may be seen as a part of the uniform polyhedra known as the nonconvex great rhombicosidodecahedron, great dodecicosidodecahedron, and great rhombidodecahedron.

Crossed pentagrammic cupola.png
Crossed pentagrammic cupola
Uniform great rhombicosidodecahedron.png
Nonconvex great rhombicosidodecahedron
Great dodecicosidodecahedron.png
Great dodecicosidodecahedron
Great rhombidodecahedron.png
Great rhombidodecahedron

Various crossed pentagrammic cupolae on the nonconvex great rhombicosidodecahedron may be diminished or gyrated (rotated) to produce a set of 12 polyhedra isomorphic to the Johnson solids J72 to J83. They are the gyrate, metabigyrate, parabigyrate, trigyrate, diminished, metabidiminished, parabidiminished, tridiminished, metagyrate diminished, paragyrate diminished, bigyrate diminished, and gyrate bidiminished quasirhombicosidodecahedra.

Dual polyhedron

The dual of the crossed pentagrammic cupola has 10 triangular and 5 kite faces:

Dual crossed pentagrammic cupola.png

Related Research Articles

<span class="mw-page-title-main">Johnson solid</span> 92 non-uniform convex polyhedra, with each face a regular polygon

In geometry, a Johnson solid is a strictly convex polyhedron each face of which is a regular polygon. There is no requirement that each face must be the same polygon, or that the same polygons join around each vertex. An example of a Johnson solid is the square-based pyramid with equilateral sides ; it has 1 square face and 4 triangular faces. Some authors require that the solid not be uniform before they refer to it as a “Johnson solid”.

<span class="mw-page-title-main">Rhombicosidodecahedron</span> Archimedean solid

In geometry, the rhombicosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces.

<span class="mw-page-title-main">Square cupola</span> 4th Johnson solid (10 faces)

In geometry, the square cupola, sometimes called lesser dome, is one of the Johnson solids. It can be obtained as a slice of the rhombicuboctahedron. As in all cupolae, the base polygon has twice as many edges and vertices as the top; in this case the base polygon is an octagon.

<span class="mw-page-title-main">Elongated square gyrobicupola</span> 37th Johnson solid

In geometry, the elongated square gyrobicupola or pseudo-rhombicuboctahedron is one of the Johnson solids. It is not usually considered to be an Archimedean solid, even though its faces consist of regular polygons that meet in the same pattern at each of its vertices, because unlike the 13 Archimedean solids, it lacks a set of global symmetries that map every vertex to every other vertex. It strongly resembles, but should not be mistaken for, the rhombicuboctahedron, which is an Archimedean solid. It is also a canonical polyhedron.

<span class="mw-page-title-main">Pentagonal cupola</span> 5th Johnson solid (12 faces)

In geometry, the pentagonal cupola is one of the Johnson solids. It can be obtained as a slice of the rhombicosidodecahedron. The pentagonal cupola consists of 5 equilateral triangles, 5 squares, 1 pentagon, and 1 decagon.

<span class="mw-page-title-main">Diminished rhombicosidodecahedron</span> 76th Johnson solid

In geometry, the diminished rhombicosidodecahedron is one of the Johnson solids. It can be constructed as a rhombicosidodecahedron with one pentagonal cupola removed.

<span class="mw-page-title-main">Gyrate rhombicosidodecahedron</span> 72nd Johnson solid

In geometry, the gyrate rhombicosidodecahedron is one of the Johnson solids. It is also a canonical polyhedron.

<span class="mw-page-title-main">Metabidiminished rhombicosidodecahedron</span> 81st Johnson solid

In geometry, the metabidiminished rhombicosidodecahedron is one of the Johnson solids.

<span class="mw-page-title-main">Tridiminished rhombicosidodecahedron</span> 83rd Johnson solid

In geometry, the tridiminished rhombicosidodecahedron is one of the Johnson solids. It can be constructed as a rhombicosidodecahedron with three pentagonal cupolae removed.

<span class="mw-page-title-main">Trigyrate rhombicosidodecahedron</span> 75th Johnson solid

In geometry, the trigyrate rhombicosidodecahedron is one of the Johnson solids. It contains 20 triangles, 30 squares and 12 pentagons. It is also a canonical polyhedron.

<span class="mw-page-title-main">Parabigyrate rhombicosidodecahedron</span> 73rd Johnson solid

In geometry, the parabigyrate rhombicosidodecahedron is one of the Johnson solids. It can be constructed as a rhombicosidodecahedron with two opposing pentagonal cupolae rotated through 36 degrees. It is also a canonical polyhedron.

<span class="mw-page-title-main">Metagyrate diminished rhombicosidodecahedron</span> 78th Johnson solid

In geometry, the metagyrate diminished rhombicosidodecahedron is one of the Johnson solids. It can be constructed as a rhombicosidodecahedron with one pentagonal cupola rotated through 36 degrees, and a non-opposing pentagonal cupola removed.

<span class="mw-page-title-main">Bigyrate diminished rhombicosidodecahedron</span> 79th Johnson solid

In geometry, the bigyrate diminished rhombicosidodecahedron is one of the Johnson solids. It can be constructed as a rhombicosidodecahedron with two pentagonal cupolae rotated through 36 degrees, and a third pentagonal cupola removed.

<span class="mw-page-title-main">Gyrate bidiminished rhombicosidodecahedron</span> 82nd Johnson solid

In geometry, the gyrate bidiminished rhombicosidodecahedron is one of the Johnson solids.

<span class="mw-page-title-main">Metabigyrate rhombicosidodecahedron</span> 74th Johnson solid

In geometry, the metabigyrate rhombicosidodecahedron is one of the Johnson solids. It can be constructed as a rhombicosidodecahedron with two non-opposing pentagonal cupolae rotated through 36 degrees. It is also a canonical polyhedron.

<span class="mw-page-title-main">Crossed square cupola</span> Polyhedron with 10 faces

In geometry, the crossed square cupola is one of the nonconvex Johnson solid isomorphs, being topologically identical to the convex square cupola. It can be obtained as a slice of the nonconvex great rhombicuboctahedron or quasirhombicuboctahedron. As in all cupolae, the base polygon has twice as many edges and vertices as the top; in this case the base polygon is an octagram.

<span class="mw-page-title-main">Pentagrammic cuploid</span> Polyhedron with 11 faces

In geometry, the pentagrammic cuploid or pentagrammmic semicupola is the simplest of the infinite family of cuploids. It can be obtained as a slice of the small complex rhombicosidodecahedron. As in all cupolae, the base polygon has twice as many edges and vertices as the top; but in this case the base polygon is a degenerate {10/2} decagram, as the top is a {5/2} pentagram. Hence, the degenerate base is withdrawn and the triangles are connected to the squares instead.

<span class="mw-page-title-main">Crossed pentagonal cuploid</span> Polyhedron with 11 faces

In geometry, the crossed pentagonal cupoloid or crossed pentagonal semicupola is one member of the infinite family of cuploids. It can be obtained as a slice of the great complex rhombicosidodecahedron. As in all cupolae, the base polygon has twice as many edges and vertices as the top; but in this case the base polygon is a degenerate {10/4} decagram, as the top is a {5/4} pentagon. Hence, the degenerate base is withdrawn and the triangles are connected to the squares instead.

References