Cyclopropanone

Last updated
Cyclopropanone
Cyclopropanone.png
Names
Preferred IUPAC name
Cyclopropanone
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/C3H4O/c4-3-1-2-3/h1-2H2 Yes check.svgY
    Key: VBBRYJMZLIYUJQ-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C3H4O/c4-3-1-2-3/h1-2H2
    Key: VBBRYJMZLIYUJQ-UHFFFAOYAV
  • C1CC1=O
  • O=C1CC1
Properties
C3H4O
Molar mass 56.06326
Appearancecolorless
Density 0.867 g/mL at 25 °C
Melting point −90 °C (−130 °F; 183 K)
Boiling point 50 to 53 °C (122 to 127 °F; 323 to 326 K) at 22 mmHg
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Cyclopropanone is an organic compound with molecular formula (CH2)2CO consisting of a cyclopropane carbon framework with a ketone functional group. The parent compound is labile, being highly sensitive toward even weak nucleophiles. Surrogates of cyclopropanone include the ketals. [1]

Contents

Preparation

Cyclopropanone has been prepared by reaction of ketene with diazomethane [1] [2] in an unreactive solvent such as dichloromethane. [3] These solutions are stable at −78 °C. In the presence of protic reagents such as carboxylic acids, primary and secondary amines, and alcohols, cyclopropanone converts to adducts, which are often isolatable at room temperature: [4] [5]

(CH2)2CO + X-H → (CH2)2C(X)(OH)

(X-H = R2N-H, HO-H, RO-H)

Structure and bonding

The C3O atoms are coplanar. As deduced from the microwave spectrum, the H2C-CH2 bond length of 157.5 pm is unusually long. By contrast, the C-C bond lengths in cyclopropane are 151 pm. The C=O bond length of 119 pm is short compared to the 123 pm bond length in acetone. [1]

The value of νC=O in the infrared spectrum is near 1815 cm−1, ca. 70 cm−1 higher than values for a typical ketone.

Derivatives

Cyclopropanones are intermediates in the Favorskii rearrangement with cyclic ketones where carboxylic acid formation is accompanied by ring-contraction.

Cyclopropanones react as 1,3-dipoles in cycloadditions for instance with cyclic dienes such as furan. [1] An oxyallyl intermediate or valence tautomer (formed by cleavage of the C2-C3 bond) is suggested as the active intermediate or even a biradical structure (compare to the related trimethylenemethane).

Cyclopropanonetautomericstructures.png

Other reactions of cyclopropanones take place through this intermediate. For instance enantiopure (+)-trans-2,3-di-tert-butylcyclopropanone racemizes when heated to 80 °C. [6]

An oxyallyl intermediate is also proposed in the photochemical conversion of a 3,5-dihydro-4H-pyrazole-4-one with expulsion of nitrogen to an indane: [7]

CyclopropanoneChemistry.png

In this reaction oxyallyl intermediate A, in chemical equilibrium with cyclopropanone B attacks the phenyl ring through its carbocation forming a transient 1,3-cyclohexadiene C (with UV trace similar to isotoluene) followed by rearomatization. The energy difference between A and B is 5 to 7 kcal/mol (21 to 29 kJ/mol).

Coprine

The cyclopropanone derivative 1-aminocyclopropanol occurs naturally by hydrolyzes of coprine, a toxin in some mushrooms. 1-Aminocyclopropanol is an inhibitor of the enzyme acetaldehyde dehydrogenase. [8]

Coprine mechanism.png

See also

Related Research Articles

<span class="mw-page-title-main">Ether</span> Organic compounds made of alkyl/aryl groups bound to oxygen (R–O–R)

In organic chemistry, ethers are a class of compounds that contain an ether group—an oxygen atom bonded to two organyl groups. They have the general formula R−O−R′, where R and R′ represent the organyl groups. Ethers can again be classified into two varieties: if the organyl groups are the same on both sides of the oxygen atom, then it is a simple or symmetrical ether, whereas if they are different, the ethers are called mixed or unsymmetrical ethers. A typical example of the first group is the solvent and anaesthetic diethyl ether, commonly referred to simply as "ether". Ethers are common in organic chemistry and even more prevalent in biochemistry, as they are common linkages in carbohydrates and lignin.

<span class="mw-page-title-main">Ester</span> Compound derived from an acid

In chemistry, an ester is a compound derived from an acid in which the hydrogen atom (H) of at least one acidic hydroxyl group of that acid is replaced by an organyl group. Analogues derived from oxygen replaced by other chalcogens belong to the ester category as well. According to some authors, organyl derivatives of acidic hydrogen of other acids are esters as well, but not according to the IUPAC.

<span class="mw-page-title-main">Ketone</span> Organic compounds of the form >C=O

In organic chemistry, a ketone is an organic compound with the structure R−C(=O)−R', where R and R' can be a variety of carbon-containing substituents. Ketones contain a carbonyl group −C(=O)−. The simplest ketone is acetone, with the formula (CH3)2CO. Many ketones are of great importance in biology and in industry. Examples include many sugars (ketoses), many steroids, and the solvent acetone.

In organic chemistry, a hemiacetal or a hemiketal has the general formula R1R2C(OH)OR, where R1, R2 is hydrogen or an organic substituent. They generally result from the addition of an alcohol to an aldehyde or a ketone, although the latter are sometimes called hemiketals. Most sugars are hemiacetals.

<span class="mw-page-title-main">Dicarbonyl</span> Molecule containing two adjacent C=O groups

In organic chemistry, a dicarbonyl is a molecule containing two carbonyl groups. Although this term could refer to any organic compound containing two carbonyl groups, it is used more specifically to describe molecules in which both carbonyls are in close enough proximity that their reactivity is changed, such as 1,2-, 1,3-, and 1,4-dicarbonyls. Their properties often differ from those of monocarbonyls, and so they are usually considered functional groups of their own. These compounds can have symmetrical or unsymmetrical substituents on each carbonyl, and may also be functionally symmetrical or unsymmetrical.

An ylide or ylid is a neutral dipolar molecule containing a formally negatively charged atom (usually a carbanion) directly attached to a heteroatom with a formal positive charge (usually nitrogen, phosphorus or sulfur), and in which both atoms have full octets of electrons. The result can be viewed as a structure in which two adjacent atoms are connected by both a covalent and an ionic bond; normally written X+–Y. Ylides are thus 1,2-dipolar compounds, and a subclass of zwitterions. They appear in organic chemistry as reagents or reactive intermediates.

In organic chemistry, ozonolysis is an organic reaction where the unsaturated bonds are cleaved with ozone. Multiple carbon–carbon bond are replaced by carbonyl groups, such as aldehydes, ketones, and carboxylic acids. The reaction is predominantly applied to alkenes, but alkynes and azo compounds are also susceptible to cleavage. The outcome of the reaction depends on the type of multiple bond being oxidized and the work-up conditions.

The Robinson annulation is a chemical reaction used in organic chemistry for ring formation. It was discovered by Robert Robinson in 1935 as a method to create a six membered ring by forming three new carbon–carbon bonds. The method uses a ketone and a methyl vinyl ketone to form an α,β-unsaturated ketone in a cyclohexane ring by a Michael addition followed by an aldol condensation. This procedure is one of the key methods to form fused ring systems.

A tetrahedral intermediate is a reaction intermediate in which the bond arrangement around an initially double-bonded carbon atom has been transformed from trigonal to tetrahedral. Tetrahedral intermediates result from nucleophilic addition to a carbonyl group. The stability of tetrahedral intermediate depends on the ability of the groups attached to the new tetrahedral carbon atom to leave with the negative charge. Tetrahedral intermediates are very significant in organic syntheses and biological systems as a key intermediate in esterification, transesterification, ester hydrolysis, formation and hydrolysis of amides and peptides, hydride reductions, and other chemical reactions.

<i>N</i>,<i>N</i>-Dicyclohexylcarbodiimide Chemical compound

N,N′-Dicyclohexylcarbodiimide (DCC or DCCD) is an organic compound with the chemical formula (C6H11N)2C. It is a waxy white solid with a sweet odor. Its primary use is to couple amino acids during artificial peptide synthesis. The low melting point of this material allows it to be melted for easy handling. It is highly soluble in dichloromethane, tetrahydrofuran, acetonitrile and dimethylformamide, but insoluble in water.

<span class="mw-page-title-main">Ring expansion and contraction</span> Chemical phenomenon within ring systems

Ring expansion and ring contraction reactions expand or contract rings, usually in organic chemistry. The term usually refers to reactions involve making and breaking C-C bonds, Diverse mechanisms lead to these kinds of reactions.

<span class="mw-page-title-main">Favorskii rearrangement</span> Chemical reaction

The Favorskii rearrangement is principally a rearrangement of cyclopropanones and α-halo ketones that leads to carboxylic acid derivatives. In the case of cyclic α-halo ketones, the Favorskii rearrangement constitutes a ring contraction. This rearrangement takes place in the presence of a base, sometimes hydroxide, to yield a carboxylic acid, but usually either an alkoxide base or an amine to yield an ester or an amide, respectively. α,α'-Dihaloketones eliminate HX under the reaction conditions to give α,β-unsaturated carbonyl compounds.Note that trihalomethyl ketone substrates will result in haloform and carboxylate formation via the haloform reaction instead.

Pivalic acid is a carboxylic acid with a molecular formula of (CH3)3CCO2H. This colourless, odiferous organic compound is solid at room temperature. Two abbreviations for pivalic acid are t-BuC(O)OH and PivOH. The pivalyl or pivaloyl group is abbreviated t-BuC(O).

The Kulinkovich reaction describes the organic synthesis of substituted cyclopropanols through reaction of esters with dialkyl­dialkoxy­titanium reagents, which are generated in situ from Grignard reagents containing a hydrogen in beta-position and titanium(IV) alkoxides such as titanium isopropoxide. This reaction was first reported by Oleg Kulinkovich and coworkers in 1989.

<span class="mw-page-title-main">Sodium methylsulfinylmethylide</span> Chemical compound

Sodium methylsulfinylmethylide is the sodium salt of the conjugate base of dimethyl sulfoxide. This unusual salt has some uses in organic chemistry as a base and nucleophile.

A (4+3) cycloaddition is a cycloaddition between a four-atom π-system and a three-atom π-system to form a seven-membered ring. Allyl or oxyallyl cations (propenylium-2-olate) are commonly used three-atom π-systems, while a diene plays the role of the four-atom π-system. It represents one of the relatively few synthetic methods available to form seven-membered rings stereoselectively in high yield.

<span class="mw-page-title-main">Carbonyl reduction</span> Organic reduction of any carbonyl group by a reducing agent

In organic chemistry, carbonyl reduction is the conversion of any carbonyl group, usually to an alcohol. It is a common transformation that is practiced in many ways. Ketones, aldehydes, carboxylic acids, esters, amides, and acid halides - some of the most pervasive functional groups, -comprise carbonyl compounds. Carboxylic acids, esters, and acid halides can be reduced to either aldehydes or a step further to primary alcohols, depending on the strength of the reducing agent. Aldehydes and ketones can be reduced respectively to primary and secondary alcohols. In deoxygenation, the alcohol group can be further reduced and removed altogether by replacement with H.

<span class="mw-page-title-main">Jones oxidation</span> Oxidation of alcohol

The Jones oxidation is an organic reaction for the oxidation of primary and secondary alcohols to carboxylic acids and ketones, respectively. It is named after its discoverer, Sir Ewart Jones. The reaction was an early method for the oxidation of alcohols. Its use has subsided because milder, more selective reagents have been developed, e.g. Collins reagent.

<i>N</i>-Sulfinyl imine

N-Sulfinyl imines are a class of imines bearing a sulfinyl group attached to nitrogen. These imines display useful stereoselectivity reactivity and due to the presence of the chiral electron withdrawing N-sulfinyl group. They allow 1,2-addition of organometallic reagents to imines. The N-sulfinyl group exerts powerful and predictable stereodirecting effects resulting in high levels of asymmetric induction. Racemization of the newly created carbon-nitrogen stereo center is prevented because anions are stabilized at nitrogen. The sulfinyl chiral auxiliary is readily removed by simple acid hydrolysis. The addition of organometallic reagents to N-sulfinyl imines is the most reliable and versatile method for the asymmetric synthesis of amine derivatives. These building blocks have been employed in the asymmetric synthesis of numerous biologically active compounds.

<span class="mw-page-title-main">Cyclobutanone</span> Chemical compound

Cyclobutanone is an organic compound with molecular formula (CH2)3CO. It is a four-membered cyclic ketone (cycloalkanone). It is a colorless volatile liquid at room temperature. Since cyclopropanone is highly sensitive, cyclobutanone is the smallest easily handled cyclic ketone.

References

  1. 1 2 3 4 Wasserman, Harry H.; Berdahl, Donald R.; Lu, Ta-Jung (1987). "The Chemistry of Cyclopropanones". PATAI'S Chemistry of Functional Groups: Cyclopropyl Group. pp. 1455–1532. doi:10.1002/0470023449.ch23. ISBN   9780470023440.
  2. Turro, Nicholas J. (1969). "Cyclopropanones". Accounts of Chemical Research. 2: 25–32. doi:10.1021/ar50013a004.
  3. De Kimpe, Norbert. "Cyclopropanone". Encyclopedia of Reagents for Organic Synthesis . doi:10.1002/047084289X.rc302.
  4. Salaün, J.; Marguerite, J. (1985). "Cyclopropanone Ethyl Hemiacetal from Ethyl 3-Chloropropanoate". Organic Syntheses. 63: 147. doi:10.15227/orgsyn.063.0147.
  5. Salaun, Jacques (1983). "Cyclopropanone Hemiacetals". Chemical Reviews. 83 (6): 619–632. doi:10.1021/cr00058a002.
  6. Greene, Frederick D.; Sclove, David B.; Pazos, Jose F.; Camp, Ronald L. (1970). "Thermal reactions of a cyclopropanone. Racemization and decarbonylation of trans-2,3-di-tert-butylcyclopropanone". Journal of the American Chemical Society. 92 (25): 7488. doi:10.1021/ja00728a051.
  7. Moiseev, Andrey G.; Abe, Manabu; Danilov, Evgeny O.; Neckers, Douglas C. (2007). "First Direct Detection of 2,3-Dimethyl-2,3-diphenylcyclopropanone". The Journal of Organic Chemistry. 72 (8): 2777–2784. doi:10.1021/jo062259r. PMID   17362038.
  8. Wiseman, Jeffrey S.; Abeles, Robert H. (May 2002). "Mechanism of inhibition of aldehyde dehydrogenase by cyclopropanone hydrate and the mushroom toxin coprine". Biochemistry. 18 (3): 427–435. doi:10.1021/bi00570a006. PMID   369602.