Cysteine desulfurase

Last updated
cysteine desulfurase
Identifiers
EC no. 2.8.1.7
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, a cysteine desulfurase (EC 2.8.1.7) is an enzyme that catalyzes the chemical reaction

L-cysteine + [enzyme]-cysteine L-alanine + [enzyme]-S-sulfanylcysteine

Thus, the two substrates of this enzyme are L-cysteine and [enzyme]-cysteine], whereas its two products are L-alanine and [enzyme]-S-sulfanylcysteine.

This enzyme belongs to the family of transferases, specifically the sulfurtransferases, which transfer sulfur-containing groups. The systematic name of this enzyme class is L-cysteine:[enzyme cysteine] sulfurtransferase. Other names in common use include IscS, NIFS, NifS, SufS, and cysteine desulfurylase. This enzyme participates in thiamine metabolism.

Structural studies

As of late 2007, only one structure has been solved for this class of enzymes, with the PDB accession code 1T3I.

Related Research Articles

<span class="mw-page-title-main">Thiocyanate</span> Ion (S=C=N, charge –1)

Thiocyanates are salts containing the thiocyanate anion [SCN]. [SCN] is the conjugate base of thiocyanic acid. Common salts include the colourless salts potassium thiocyanate and sodium thiocyanate. Mercury(II) thiocyanate was formerly used in pyrotechnics.

<span class="mw-page-title-main">Nitrogenase</span> Class of enzymes

Nitrogenases are enzymes (EC 1.18.6.1EC 1.19.6.1) that are produced by certain bacteria, such as cyanobacteria (blue-green bacteria) and rhizobacteria. These enzymes are responsible for the reduction of nitrogen (N2) to ammonia (NH3). Nitrogenases are the only family of enzymes known to catalyze this reaction, which is a step in the process of nitrogen fixation. Nitrogen fixation is required for all forms of life, with nitrogen being essential for the biosynthesis of molecules (nucleotides, amino acids) that create plants, animals and other organisms. They are encoded by the Nif genes or homologs. They are related to protochlorophyllide reductase.

Iron–sulfur proteins are proteins characterized by the presence of iron–sulfur clusters containing sulfide-linked di-, tri-, and tetrairon centers in variable oxidation states. Iron–sulfur clusters are found in a variety of metalloproteins, such as the ferredoxins, as well as NADH dehydrogenase, hydrogenases, coenzyme Q – cytochrome c reductase, succinate – coenzyme Q reductase and nitrogenase. Iron–sulfur clusters are best known for their role in the oxidation-reduction reactions of electron transport in mitochondria and chloroplasts. Both Complex I and Complex II of oxidative phosphorylation have multiple Fe–S clusters. They have many other functions including catalysis as illustrated by aconitase, generation of radicals as illustrated by SAM-dependent enzymes, and as sulfur donors in the biosynthesis of lipoic acid and biotin. Additionally, some Fe–S proteins regulate gene expression. Fe–S proteins are vulnerable to attack by biogenic nitric oxide, forming dinitrosyl iron complexes. In most Fe–S proteins, the terminal ligands on Fe are thiolate, but exceptions exist.

Cysteine metabolism refers to the biological pathways that consume or create cysteine. The pathways of different amino acids and other metabolites interweave and overlap to creating complex systems.

<span class="mw-page-title-main">Rhodanese</span> Mitochondrial enzyme which breaks down cyanide

Rhodanese is a mitochondrial enzyme that detoxifies cyanide (CN) by converting it to thiocyanate. In enzymatology, the common name is listed as thiosulfate sulfurtransferase. The diagram on the right shows the crystallographically-determined structure of rhodanese.

The enzyme L-3-cyanoalanine synthase catalyzes the chemical reaction

The enzyme selenocysteine lyase (SCL) (EC 4.4.1.16) catalyzes the chemical reaction

<span class="mw-page-title-main">3-mercaptopyruvate sulfurtransferase</span> Class of enzymes

In enzymology, a 3-mercaptopyruvate sulfurtransferase is an enzyme that catalyzes the chemical reactions of 3-mercaptopyruvate. This enzyme belongs to the family of transferases, specifically the sulfurtransferases. This enzyme participates in cysteine metabolism. It is encoded by the MPST gene.

In enzymology, a thiosulfate-dithiol sulfurtransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a thiosulfate-thiol sulfurtransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a tRNA sulfurtransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Aspartate 4-decarboxylase</span>

In enzymology, an aspartate 4-decarboxylase (EC 4.1.1.12) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Sulfinoalanine decarboxylase</span>

The enzyme sulfinoalanine decarboxylase (EC 4.1.1.29) catalyzes the chemical reaction

In enzymology, a cysteine synthase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">NFS1</span> Protein-coding gene in the species Homo sapiens

Cysteine desulfurase, mitochondrial is an enzyme that in humans is encoded by the NFS1 gene.

<span class="mw-page-title-main">ISCU</span> Mammalian protein found in Homo sapiens

Iron-sulfur cluster assembly enzyme ISCU, mitochondrial is a protein that in humans is encoded by the ISCU gene. It encodes an iron-sulfur (Fe-S) cluster scaffold protein involved in [2Fe-2S] and [4Fe-4S] cluster synthesis and maturation. A deficiency of ISCU is associated with a mitochondrial myopathy with lifelong exercise intolerance where only minor exertion causes tachycardia, shortness of breath, muscle weakness and myalgia.

Aminotransferase class-V is an evolutionary conserved protein domain. This domain is found in amino transferases, and other enzymes including cysteine desulphurase EC:4.4.1.-.

<span class="mw-page-title-main">Iron–sulfur cluster biosynthesis</span>

In biochemistry, the iron–sulfur cluster biosynthesis describes the components and processes involved in the biosynthesis of iron–sulfur proteins. The topic is of interest because these proteins are pervasive. The iron sulfur proteins contain iron–sulfur clusters, some with elaborate structures, that feature iron and sulfide centers. One broad biosynthetic task is producing sulfide (S2-), which requires various families of enzymes. Another broad task is affixing the sulfide to iron, which is achieved on scaffolds, which are nonfunctional. Finally these Fe-S cluster is transferred to a target protein, which then become functional.

Molybdenum cofactor sulfurtransferase (EC 2.8.1.9, molybdenum cofactor sulfurase, ABA3, MoCo sulfurase, MoCo sulfurtransferase) is an enzyme with systematic name L-cysteine:molybdenum cofactor sulfurtransferase. This enzyme catalyses the following chemical reaction

Molybdopterin synthase sulfurtransferase is an enzyme with systematic name persulfurated L-cysteine desulfurase:(molybdopterin-synthase sulfur-carrier protein)-Gly-Gly sulfurtransferase. This enzyme catalyses the following chemical reaction

References