Coenzyme-B sulfoethylthiotransferase

Last updated
coenzyme-B sulfoethylthiotransferase
Identifiers
EC no. 2.8.4.1
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, coenzyme-B sulfoethylthiotransferase, also known as methyl-coenzyme M reductase (MCR) or most systematically as 2-(methylthio)ethanesulfonate:N-(7-thioheptanoyl)-3-O-phosphothreonine S-(2-sulfoethyl)thiotransferase is an enzyme that catalyzes the final step in the formation of methane. [1] It does so by combining the hydrogen donor coenzyme B and the methyl donor coenzyme M. Via this enzyme, most of the natural gas on earth was produced. Ruminants (e.g. cows) produce methane because their rumens contain methanogenic prokaryotes (Archaea) [2] [3] that encode and express the set of genes of this enzymatic complex.

Contents

The enzyme has two active sites, each occupied by the nickel-containing F430 cofactor. [4]

methyl-CoM2-(methylthio)ethanesulfonate + coenzyme BN-(7-mercaptoheptanoyl)threonine 3-O-phosphate CoM-S-S-CoB + methane
Structure of 2-mercaptoethanesulfonate (coenzyme M: reacts after methylation on the thiol) Coenzyme M (CoM).svg
Structure of 2-mercaptoethanesulfonate (coenzyme M: reacts after methylation on the thiol)
Structure of N-(7-mercaptoheptanoyl)threonine 3-O-phosphate (coenzyme B) Coenzyme B (CoB).svg
Structure of N-(7-mercaptoheptanoyl)threonine 3-O-phosphate (coenzyme B)

The two substrates of this enzyme are 2-(methylthio)ethanesulfonate and N-(7-mercaptoheptanoyl)threonine 3-O-phosphate; its two products are CoM-S-S-CoB and methane. 3-Nitrooxypropanol inhibits the enzyme. [5]

In some species, the enzyme reacts in reverse (a process called reverse methanogenesis ), catalysing the anaerobic oxidation of methane, therefore removing it from the environment. [6] Such organisms are methanotrophs.

This enzyme belongs to the family of transferases, specifically those transferring alkylthio groups.

Structure

Coenzyme-B sulfoethylthiotransferase is a multiprotein complex made up of a pair of identical halves. Each half is made up of three subunits: α, β and γ, [7] also called McrA, McrB and McrG, respectively.

References

  1. Stephen W., Ragdale (2014). "Chapter 6. Biochemistry of Methyl-Coenzyme M Reductase: The Nickel Metalloenzyme that Catalyzes the Final Step in Synthesis and the First Step in Anaerobic Oxidation of the Greenhouse Gas Methane". In Peter M.H. Kroneck and Martha E. Sosa Torres (ed.). The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment. Metal Ions in Life Sciences. Vol. 14. Springer. pp. 125–145. doi:10.1007/978-94-017-9269-1_6. ISBN   978-94-017-9268-4. PMID   25416393.
  2. "Bovine Rumen - microbewiki".
  3. Whitford MF, Teather RM, Forster RJ (2001). "Phylogenetic analysis of methanogens from the bovine rumen". BMC Microbiology. 1: 5. doi: 10.1186/1471-2180-1-5 . PMC   32158 . PMID   11384509.
  4. Thauer RK (September 1998). "Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture". Microbiology. 144 (9): 2377–406. doi: 10.1099/00221287-144-9-2377 . PMID   9782487.
  5. Hristov AN, Oh J, Giallongo F, Frederick TW, Harper MT, Weeks HL, Branco AF, Moate PJ, Deighton MH, Williams SR, Kindermann M, Duval S (August 2015). "An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production". Proceedings of the National Academy of Sciences of the United States of America. 112 (34): 10663–8. Bibcode:2015PNAS..11210663H. doi: 10.1073/pnas.1504124112 . PMC   4553761 . PMID   26229078.
  6. Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, DeLong EF (September 2004). "Reverse methanogenesis: testing the hypothesis with environmental genomics". Science. 305 (5689): 1457–62. Bibcode:2004Sci...305.1457H. doi:10.1126/science.1100025. PMID   15353801. S2CID   31107045.
  7. Ermler U, Grabarse W, Shima S, Goubeaud M, Thauer RK (November 1997). "Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation". Science. 278 (5342): 1457–62. Bibcode:1997Sci...278.1457E. doi:10.1126/science.278.5342.1457. PMID   9367957.

Further reading