Dehydroacetic acid

Last updated
Dehydroacetic acid [1]
Dehydroacetic acid.svg
Names
Preferred IUPAC name
3-Acetyl-2-hydroxy-6-methyl-4H-pyran-4-one
Other names
Biocide 470F[ citation needed ]
Methylacetopyronone[ citation needed ]
Identifiers
3D model (JSmol)
AbbreviationsDHAA
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.007.541 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 208-293-9
E number E265 (preservatives)
MeSH dehydroacetic+acid
PubChem CID
UNII
  • InChI=1S/C8H8O4/c1-4-3-6(10)7(5(2)9)8(11)12-4/h3,11H,1-2H3 X mark.svgN
    Key: JEQRBTDTEKWZBW-UHFFFAOYSA-N X mark.svgN
  • CC(=O)C1=C(O)OC(C)=CC1=O
Properties
C8H8O4
Molar mass 168.148 g·mol−1
AppearanceWhite crystals
Melting point 109 °C; 228 °F; 382 K
Boiling point 270 °C; 518 °F; 543 K
Hazards
GHS labelling:
GHS-pictogram-exclam.svg
Warning
H302
P264, P270, P301+P312, P330, P501
NFPA 704 (fire diamond)
1
1
0
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Dehydroacetic acid is an organic compound which has several industrial applications. The compound is classified as a pyrone derivative. It presents as an odorless, colorless to white crystalline powder, almost insoluble in water and moderately soluble in most organic solvents. [2]

Contents

Preparation

It is prepared by the base-catalysed dimerization of diketene. [3] Commonly used organic bases include imidazole, DABCO, and pyridine. [4]

Uses

Industrially, dehydroacetic acid has several uses which include the following:

Related Research Articles

<span class="mw-page-title-main">Chemistry of ascorbic acid</span> Chemical compound

Ascorbic acid is an organic compound with formula C
6
H
8
O
6
, originally called hexuronic acid. It is a white solid, but impure samples can appear yellowish. It dissolves well in water to give mildly acidic solutions. It is a mild reducing agent.

<span class="mw-page-title-main">Benzoic acid</span> Organic compound (C6H5COOH)

Benzoic acid is a white solid organic compound with the formula C6H5COOH, whose structure consists of a benzene ring with a carboxyl substituent. It is the simplest aromatic carboxylic acid. The name is derived from gum benzoin, which was for a long time its only source.

<span class="mw-page-title-main">Carboxylic acid</span> Organic compound containing a –C(=O)OH group

In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group attached to an R-group. The general formula of a carboxylic acid is R−COOH or R−CO2H, with R referring to the alkyl, alkenyl, aryl, or other group. Carboxylic acids occur widely. Important examples include the amino acids and fatty acids. Deprotonation of a carboxylic acid gives a carboxylate anion.

<span class="mw-page-title-main">Dye</span> Soluble chemical substance or natural material which can impart color to other materials

A dye is a colored substance that chemically bonds to the substrate to which it is being applied. This distinguishes dyes from pigments which do not chemically bind to the material they color. Dye is generally applied in an aqueous solution, and may require a mordant to improve the fastness of the dye on the fiber.

A preservative is a substance or a chemical that is added to products such as food products, beverages, pharmaceutical drugs, paints, biological samples, cosmetics, wood, and many other products to prevent decomposition by microbial growth or by undesirable chemical changes. In general, preservation is implemented in two modes, chemical and physical. Chemical preservation entails adding chemical compounds to the product. Physical preservation entails processes such as refrigeration or drying. Preservative food additives reduce the risk of foodborne infections, decrease microbial spoilage, and preserve fresh attributes and nutritional quality. Some physical techniques for food preservation include dehydration, UV-C radiation, freeze-drying, and refrigeration. Chemical preservation and physical preservation techniques are sometimes combined.

<span class="mw-page-title-main">Tartaric acid</span> Organic acid found in many fruits

Tartaric acid is a white, crystalline organic acid that occurs naturally in many fruits, most notably in grapes, but also in bananas, tamarinds, and citrus. Its salt, potassium bitartrate, commonly known as cream of tartar, develops naturally in the process of fermentation. It is commonly mixed with sodium bicarbonate and is sold as baking powder used as a leavening agent in food preparation. The acid itself is added to foods as an antioxidant E334 and to impart its distinctive sour taste. Naturally occurring tartaric acid is a useful raw material in organic chemical synthesis. Tartaric acid is an alpha-hydroxy-carboxylic acid, is diprotic and aldaric in acid characteristics, and is a dihydroxyl derivative of succinic acid.

<span class="mw-page-title-main">Sodium chloride</span> Chemical compound with formula NaCl

Sodium chloride, commonly known as salt, is an ionic compound with the chemical formula NaCl, representing a 1:1 ratio of sodium and chloride ions. With molar masses of 22.99 and 35.45 g/mol respectively, 100 g of NaCl contains 39.34 g Na and 60.66 g Cl. Sodium chloride is the salt most responsible for the salinity of seawater and of the extracellular fluid of many multicellular organisms. In its edible form of table salt, it is commonly used as a condiment and food preservative. Large quantities of sodium chloride are used in many industrial processes, and it is a major source of sodium and chlorine compounds used as feedstocks for further chemical syntheses. Another major application of sodium chloride is de-icing of roadways in sub-freezing weather.

<span class="mw-page-title-main">Ethylenediaminetetraacetic acid</span> Chemical compound

Ethylenediaminetetraacetic acid (EDTA) is an aminopolycarboxylic acid with the formula [CH2N(CH2CO2H)2]2. This white, water-soluble solid is widely used to bind to iron (Fe2+/Fe3+) and calcium ions (Ca2+), forming water-soluble complexes even at neutral pH. It is thus used to remove (dissolve) Fe- and Ca-containing scale as well as to delivery Fe ions under conditions where its oxides are insoluble. EDTA is available as several salts, notably disodium EDTA, sodium calcium edetate, and tetrasodium EDTA, but these all function similarly.

<span class="mw-page-title-main">Sodium nitrate</span> Chemical compound

Sodium nitrate is the chemical compound with the formula NaNO
3
. This alkali metal nitrate salt is also known as Chile saltpeter to distinguish it from ordinary saltpeter, potassium nitrate. The mineral form is also known as nitratine, nitratite or soda niter.

<span class="mw-page-title-main">Benzophenone</span> Chemical compound

Benzophenone is the organic compound with the formula (C6H5)2CO, generally abbreviated Ph2CO. It is a white solid that is soluble in organic solvents. Benzophenone is a widely used building block in organic chemistry, being the parent diarylketone.

<span class="mw-page-title-main">Oxime</span> Organic compounds of the form >C=N–OH

In organic chemistry, an oxime is a organic compound belonging to the imines, with the general formula RR’C=N−OH, where R is an organic side-chain and R’ may be hydrogen, forming an aldoxime, or another organic group, forming a ketoxime. O-substituted oximes form a closely related family of compounds. Amidoximes are oximes of amides with general structure R1C(=NOH)NR2R3.

<span class="mw-page-title-main">Stearic acid</span> Eighteen-carbon straight-chain fatty acid

Stearic acid ( STEER-ik, stee-ARR-ik) is a saturated fatty acid with an 18-carbon chain. The IUPAC name is octadecanoic acid. It is a waxy solid and its chemical formula is C17H35CO2H. Its name comes from the Greek word στέαρ "stéar", which means tallow. The salts and esters of stearic acid are called stearates. As its ester, stearic acid is one of the most common saturated fatty acids found in nature following palmitic acid. The triglyceride derived from three molecules of stearic acid is called stearin.

Hexamethylenetetramine, also known as methenamine, hexamine, or urotropin, is a heterocyclic organic compound with the formula (CH2)6N4. This white crystalline compound is highly soluble in water and polar organic solvents. It has a cage-like structure similar to adamantane. It is useful in the synthesis of other organic compounds, including plastics, pharmaceuticals, and rubber additives. It sublimes in vacuum at 280 °C.

<span class="mw-page-title-main">Malonic acid</span> Carboxylic acid with chemical formula CH2(COOH)2

Malonic acid (IUPAC systematic name: propanedioic acid) is a dicarboxylic acid with structure CH2(COOH)2. The ionized form of malonic acid, as well as its esters and salts, are known as malonates. For example, diethyl malonate is malonic acid's diethyl ester. The name originates from the Greek word μᾶλον (malon) meaning 'apple'.

<span class="mw-page-title-main">Anthraquinone</span> Chemical compound

Anthraquinone, also called anthracenedione or dioxoanthracene, is an aromatic organic compound with formula C
14
H
8
O
2
. Isomers include various quinone derivatives. The term anthraquinone however refers to the isomer, 9,10-anthraquinone wherein the keto groups are located on the central ring. It is a building block of many dyes and is used in bleaching pulp for papermaking. It is a yellow, highly crystalline solid, poorly soluble in water but soluble in hot organic solvents. It is almost completely insoluble in ethanol near room temperature but 2.25 g will dissolve in 100 g of boiling ethanol. It is found in nature as the rare mineral hoelite.

<span class="mw-page-title-main">Sodium sulfate</span> Chemical compound with formula Na2SO4

Sodium sulfate (also known as sodium sulphate or sulfate of soda) is the inorganic compound with formula Na2SO4 as well as several related hydrates. All forms are white solids that are highly soluble in water. With an annual production of 6 million tonnes, the decahydrate is a major commodity chemical product. It is mainly used as a filler in the manufacture of powdered home laundry detergents and in the Kraft process of paper pulping for making highly alkaline sulfides.

<span class="mw-page-title-main">Isobutyric acid</span> Carboxylic acid with chemical formula (CH3)2CHCO2H

Isobutyric acid, also known as 2-methylpropanoic acid or isobutanoic acid, is a carboxylic acid with structural formula (CH3)2CHCOOH. It is an isomer of n-butyric acid. It is classified as a short-chain fatty acid. Deprotonation or esterification gives derivatives called isobutyrates.

<span class="mw-page-title-main">Sorbic acid</span> Organic compound (CH3(CH)4COOH)

Sorbic acid, or 2,4-hexadienoic acid, is a natural organic compound used as a food preservative. It has the chemical formula CH3(CH)4CO2H and the structure H3C−CH=CH−CH=CH−C(=O)OH. It is a colourless solid that is slightly soluble in water and sublimes readily. It was first isolated from the unripe berries of the Sorbus aucuparia, hence its name.

<span class="mw-page-title-main">Sulfonic acid</span> Organic compounds with the structure R−S(=O)2−OH

In organic chemistry, sulfonic acid refers to a member of the class of organosulfur compounds with the general formula R−S(=O)2−OH, where R is an organic alkyl or aryl group and the S(=O)2(OH) group a sulfonyl hydroxide. As a substituent, it is known as a sulfo group. A sulfonic acid can be thought of as sulfuric acid with one hydroxyl group replaced by an organic substituent. The parent compound is the parent sulfonic acid, HS(=O)2(OH), a tautomer of sulfurous acid, S(=O)(OH)2. Salts or esters of sulfonic acids are called sulfonates.

<span class="mw-page-title-main">Phenylpropanoic acid</span> Chemical compound

Phenylpropanoic acid or hydrocinnamic acid is a carboxylic acid with the formula C9H10O2 belonging to the class of phenylpropanoids. It is a white, crystalline solid with a sweet, floral scent at room temperature. Phenylpropanoic acid has a wide variety of uses including cosmetics, food additives, and pharmaceuticals.

References

  1. 1 2 Merck Index, 11th Edition, 2855
  2. Jilalat, Alae Eddine; et al. (2017). "DEHYDROACETIC ACID (Part 1): CHEMICAL AND PHARMACOLOGICAL PROPERTIES". Journal Marocain de Chimie Hétérocyclique. 16 (1): 1–47. ISSN   1114-7792 . Retrieved July 3, 2017.
  3. Raimund Miller, Claudio Abaecherli, Adel Said, Barry Jackson. "Ketenes". In Ullmann's Encyclopedia of Industrial Chemistry. 2001, Wiley-VCH, Weinheim. doi : 10.1002/14356007.a15_063
  4. Clemens, Robert J.; Witzeman, J. Stewart (1993). Agreda, Victor H.; Zoeller, Joseph R. (eds.). Acetic Acid and its Derivatives. New York: Marcel Dekker, Inc. p. 202. ISBN   9780824787929.
  5. Harold William Rossmoore. Handbook of Biocide and Preservative Use, p. 341. ISBN   0-7514-0212-5
  6. Cook, Denys (1963). "The Preparation, Properties, and Structure of 2,6-bis-(Alkyamino)-2,5-heptadien-4-ones". Canadian Journal of Chemistry. 41 (6): 1435–1440. doi: 10.1139/v63-195 .