Dendronephthya hemprichi

Last updated

Dendronephthya hemprichi
Dendronephthya hemprichi at Gilli Lawa Laut.JPG
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Cnidaria
Class: Octocorallia
Order: Alcyonacea
Family: Nephtheidae
Genus: Dendronephthya
Species:
D. hemprichi
Binomial name
Dendronephthya hemprichi
Klunzinger, 1877

Dendronephthya hemprichi is a common soft coral found from Red Sea to Western Pacific.In may 2023 on the Mediterranean coast of Israel exactly on the coasts of the city of Sdot Yam many specimens were filmed, subsequently it was also photographed in Lebanon In Byblos.It is usually pink or orange with transparent trunk and it grows up to 70 cm. [1] [2] [3] It exists at 30° N latitude. [4] The smallest unit of this coral, like all other corals, is a polyp. This particular species of the Dendronephthya has the ability to reproduce sexually and asexually through broadcast spawning and clonal propagation, respectively. [4] [5]

Contents

Reproductive Behavior

D. hemprichi is gonochoric – sexually binary – with colonies releasing either eggs or sperm. [4] As a broadcasting species, in terms of sexual reproductive ability, it participates in mass spawning events in which the coral releases its gametes (eggs or sperm) into the water where they fertilize. The fertilized egg becomes an embryo and further develops into coral larvae, called planulae. [6]

Generally, coral reefs are located between 30° S to 30° N latitude. At 30°N latitude, D. hemprichi is unlike the majority of soft corals at high latitudes that participate in annual spawning events. Instead, it follows a diurnal spawning pattern in which gametes are released every day. [4]

The expansion of polyps facilitates the release of gametes. In turn, polyps expand and contract in response to flow rates of water currents. Since D. hemprichi is located in a region with strong water currents, its polyps have adapted to expanding and releasing gametes only when the water flow rate is between 3–25 cm/s. To increase the probability of successful reproduction, this species anchors the egg to the mouth of the polyps with a thread of mucus for a short period of time so that sperm released by male colonies in the area may fertilize the egg. [4]

In addition to its sexual reproductive capabilities, this species of Dendronephthya is also able to reproduce asexually through the process of clonal propagation. [5] This method of reproduction facilitates rapid aggregation of biomass to allow D. hemprichi to dominate a zooxanthellate environment despite being an azooxanthellate organism.

In the process of fragmentation, a small piece, 2–5 mm in length, made up of a few polyps, breaks off from the parent colony in a process that lasts about 20 hours in length. However, a parent colony may have hundreds of fragments detaching simultaneously. These fragments have root-like processes at their base to enable attachment to different surfaces. Due to the unipolar orientation of these roots as well as the fragments’ negative buoyancy causing them to sink, they attach more commonly to upper surfaces of horizontal substrata as well as vertical surfaces, though at a lesser rate. Many of the vertical surfaces are artificial substrata of oil jetties located near Eilat. [5]

Despite more fragments attaching to horizontal surfaces, it is ultimately the coral populations on the artificial vertical surfaces that have a higher survival rate. This is due to the higher susceptibility of the vertical coral to prevalent strong water currents transporting phytoplankton, the nutritional supply of this azooxanthellate soft coral. [5] [7]

Ecology

Herbivory

D. hemprichi ingests phytoplankton through the process of passive suspension filter feeding. The anatomy of each polyp plays a role in optimizing the coral’s ability to filter nutrients. As an octocoral, each polyp contains eight tentacles with pinnules lining the tentacles, thus increasing surface area to maximize filtration. [8] The use of phytoplankton by this species as its main energy source was determined through fluorescence microscopy, measurement of phaeopigments levels, and observation of phytoplankton accumulation in the gut of starved D. hemprichi. As catabolites of phytoplankton, phaeopigments are used to measure the amount of phytoplankton digested by the coral. Fluorescent microscopy verifies the presence of the phytoplankton, while the accumulation of phytoplankton in starved D. hemprichi and subsequent increasing levels of phaeopigments determine that phytoplankton is being consumed and digested. Furthermore, the depletion of phytoplankton concentrations in water currents downstream of D. hemprichi colonies also support the energetic pathway designating phytoplankton as the main source of energy for D. hemprichi. [9]

Niche

D. hemprichi is found on steep slopes between 1–32 meters of the benthic zone in the Red Sea. [8] This depth is prone to strong currents generated by wind on the surface of the water. In addition, another Dendronephthya species – D. sinaiensis – also exists between 11–32 m. In this case, D. sinaiensis has longer and denser pinnules limiting its consumption to consume smaller phytoplankton. In addition, D. hemprichi has larger sclerites that form its exoskeleton, causing it to be less flexible in behavior. The differences in sizes of pinnules and sclerites of these two species support Gause’s theory of niche partitioning. [8]

Human Impact

The coral reefs of Eilat host a large number of divers, ranging from scientists to novices seeking a thrill. In addition, there are also many oil jetties off the coast of the city. Diving pressure and the behavior of industries disrupt the local habitat through man made disturbances. [10] Some of these disruptions include coral breakages and damages, in large due to contact of fins to the reef. In addition, benthic zone and branching corals, 2 categories under which D. hemprichi is classified, have an increased rate of recreational diving damage than corals that inhabit deeper zones. [11] In an effort to decrease diving pressure on natural reefs, artificial reefs were constructed with D. hemprichi, sea urchins, and another coral species – Stylophora pistillata – to determine their ability to attract divers as well as to support the local fauna. [10] Unlike its usual niche on vertical protrusions or on the top side of horizontal substrata, D. hemprichi has attached to the bottom surface of the horizontal plates that form the scaffold of the artificial reef. [5] This is due to S. pistillata outcompeting D. hemprichi for the upper surface of the horizontal substrata since the zooxanthellate of S. pistillata require light for photosynthesis whereas azooxanthellate D. hemprichi can exist without it. Therefore by living on the bottom surface of horizontal substrata, D. hemprichi is able to avoid algal growth and sedimentation as well. [10] The identification of optimal niches for D. hemprichi allows for future transplantation of coral to artificial reefs in order to remedy human impact.

Related Research Articles

<span class="mw-page-title-main">Coral</span> Marine invertebrates of the class Anthozoa

Corals are colonial marine invertebrates within the class Anthozoa of the phylum Cnidaria. They typically form compact colonies of many identical individual polyps. Coral species include the important reef builders that inhabit tropical oceans and secrete calcium carbonate to form a hard skeleton.

<span class="mw-page-title-main">Anthozoa</span> Class of cnidarians without a medusa stage

Anthozoa is a class of marine invertebrates which includes the sea anemones, stony corals and soft corals. Adult anthozoans are almost all attached to the seabed, while their larvae can disperse as part of the plankton. The basic unit of the adult is the polyp; this consists of a cylindrical column topped by a disc with a central mouth surrounded by tentacles. Sea anemones are mostly solitary, but the majority of corals are colonial, being formed by the budding of new polyps from an original, founding individual. Colonies are strengthened by calcium carbonate and other materials and take various massive, plate-like, bushy or leafy forms.

<span class="mw-page-title-main">Scleractinia</span> Order of Hexacorallia which produce a massive stony skeleton

Scleractinia, also called stony corals or hard corals, are marine animals in the phylum Cnidaria that build themselves a hard skeleton. The individual animals are known as polyps and have a cylindrical body crowned by an oral disc in which a mouth is fringed with tentacles. Although some species are solitary, most are colonial. The founding polyp settles and starts to secrete calcium carbonate to protect its soft body. Solitary corals can be as much as 25 cm (10 in) across but in colonial species the polyps are usually only a few millimetres in diameter. These polyps reproduce asexually by budding, but remain attached to each other, forming a multi-polyp colony of clones with a common skeleton, which may be up to several metres in diameter or height according to species.

<span class="mw-page-title-main">Pillar coral</span> Species of coral

Pillar coral is a hard coral found in the western Atlantic Ocean and the Caribbean Sea. It is the only species in the monotypic genus Dendrogyra. It is a digitate coral -that is, it resembles fingers or a cluster of cigars, growing up from the sea floor without any secondary branching. It is large and can grow on both flat and sloping surfaces at depths down to 20 m (65 ft). It is one of the few types of hard coral in which the polyps can commonly be seen feeding during the day.

<i>Millepora dichotoma</i> Species of hydrozoan

Millepora dichotoma, the net fire coral, is a species of hydrozoan, consisting of a colony of polyps with a calcareous skeleton.

<i>Tubastraea</i> Genus of corals

Tubastraea, also known as sun coral or sun polyps, is a genus of coral in the phylum Cnidaria. It is a cup coral in the family Dendrophylliidae.

<i>Leptogorgia virgulata</i> Species of coral

Leptogorgia virgulata, commonly known as the sea whip or colorful sea whip, is a species of soft coral in the family Gorgoniidae.

<i>Acropora prolifera</i> Species of coral

Acropora prolifera, the fused staghorn coral, is a branching, colonial, stony coral found in shallow parts of the Caribbean Sea, the Bahamas and southern Florida.

<i>Pocillopora damicornis</i> Species of coral

Pocillopora damicornis, commonly known as the cauliflower coral or lace coral, is a species of stony coral in the family Pocilloporidae. It is native to tropical and subtropical parts of the Indian and Pacific Oceans.

<i>Pocillopora verrucosa</i> Species of coral

Pocillopora verrucosa, commonly known as cauliflower coral, rasp coral, or knob-horned coral, is a species of stony coral in the family Pocilloporidae. It is native to tropical and subtropical parts of the Indian and Pacific Oceans.

<i>Dipsastraea speciosa</i> Species of coral

Dipsastraea speciosa is a species of colonial stony coral in the family Merulinidae. It is found in tropical waters of the Indian and Pacific oceans.

<i>Carijoa riisei</i> Species of coral

Carijoa riisei, the snowflake coral or branched pipe coral, is a species of soft coral in the family Clavulariidae. It was originally thought to have been native to the tropical western Atlantic Ocean and subsequently spread to other areas of the world such as Hawaii and the greater tropical Pacific, where it is regarded as an invasive species. The notion that it is native to the tropical western Atlantic was perpetuated from the fact that the type specimen, described by Duchassaing & Michelotti in 1860, was collected from the US Virgin Islands. It has subsequently been shown through molecular evidence that it is more likely that the species is in fact native to the Indo-Pacific and subsequently spread to the western tropical Atlantic most likely as a hull fouling species prior to its original description.

<i>Favites pentagona</i> Species of stony coral in the family Merulinidae

Favites pentagona is a species of stony coral in the family Merulinidae, sometimes known as larger star coral. It is native to the Indo-Pacific region and its range extends from the Red Sea through the Indian Ocean to the Western Pacific Ocean. This is a common species throughout its wide range and the International Union for Conservation of Nature has rated its conservation status as being of "least concern".

<i>Rhytisma fulvum</i> Species of coral

Rhytisma fulvum, the sulphur leather coral, is a species of colonial soft coral in the family Alcyoniidae. It is native to shallow reefs in the Red Sea and the Indo-Pacific region. It was first described by the Swedish naturalist Peter Forsskål in 1775.

<i>Schizocyathus</i> Genus of corals

Schizocyathus is a monotypic genus of stony corals in the family Schizocyathidae, the only species being Schizocyathus fissilis. It is a deep water, azooxanthellate coral.

<i>Anthelia glauca</i> Species of coral

Anthelia glauca, the giant anthelia, is a species of soft coral in the family Xeniidae. It is a colonial species and is found in shallow water in the Indo-Pacific region.

<i>Goniastrea favulus</i> Species of coral

Goniastrea favulus, also known as the lesser star coral, is a species of stony coral in the family Merulinidae. It occurs in shallow water in the Indo-Pacific region. This is an uncommon species of coral and the International Union for Conservation of Nature has rated its conservation status as being "near threatened".

<i>Chrysogorgia elegans</i> Species of coral

Chrysogorgia elegans is a species of soft coral in the family Chrysogorgiidae. It is found in the Gulf of Mexico, the Mediterranean Sea and the North Atlantic Ocean. Soft coral can also be referred to as sea fans, sea whips, sea feathers, and sea pens.

<i>Tubastraea faulkneri</i> Species of coral

Tubastraea faulkneri, common name Orange sun coral, is a species of large-polyp stony corals belonging to the family Dendrophylliidae. Other common names of this coral are Orange Cup Coral, Sun Coral, Orange Polyp Coral, Rose Sun Coral, Golden Cup Coral, Sun Flower Coral, and Tube Coral.

References

  1. Lieske, Ewald; Myers, Robert (2004). Coral reef guide. Red Sea. p. 250. ISBN   9780007741731.
  2. WoRMS - World Register of Marine Species - Dendronephthya hemprichi Klunzinger, 1877
  3. Dendronephthya hemprichi – Information on Dendronephthya hemprichi – Encyclopedia of Life
  4. 1 2 3 4 5 Dahan, M. & Benayahu, Y. 1993. Reproduction of Dendronephthya hemprichi (Cnidaria: Octocorallia): year-round spawning in an azooxanthellate soft coral. Marine Biology. 129: 573.
  5. 1 2 3 4 5 Dahan, M. & Benayahu, Y. 1997. Clonal propagation by the azooxanthellate octocoral Dendronephthya hemprichi. Coral Reefs. 16: 5.
  6. “Coral Reproduction”. Giving Coral Reefs a Future. Secore International. http://www.secore.org/site/corals/detail/coral-reproduction.15.html
  7. Fabricius, K., Behayahu, Y., and Genin, A. 1995. Herbivory in Asymbiotic Soft Corals. Science. 268: 90-92.
  8. 1 2 3 Grossowicz, M. & Benayahu, Y. 2012. Differential morphological features of two Dendronephthya soft coral species suggest differences in feeding niches. Marine Biodiversity. 42: 65.
  9. Fabricius, K., Yahel G., Genin A. 1988. In situ depletion of phytoplankton by an azooxanthellate soft coral. Limnology and Oceanography. 43:2.
  10. 1 2 3 Oren, U. & Benayahu, Y. 1997. Transplantation of juvenile corals: a new approach for enhancing colonization of artificial reefs. Marine Biology. 127: 499.
  11. Hasler H., Ott J.A. 2008. Diving down the reefs? Intensive diving tourism threatens the reefs of the northern Red Sea. Marine Pollution Bulletin. 56(10): 1788-1794.