Edmontosaurus mummy AMNH 5060

Last updated

The Edmontosaurus mummy AMNH 5060 at the American Museum of Natural History, New York, in top view Pasta - mummified trachodon - AmMusNatHist.jpg
The Edmontosaurus mummy AMNH 5060 at the American Museum of Natural History, New York, in top view

The Edmontosaurus mummy AMNH 5060 is an exceptionally well-preserved fossil of a dinosaur in the collection of the American Museum of Natural History (AMNH). Discovered in 1908 in the United States near Lusk, Wyoming, it was the first dinosaur specimen found to include a skeleton encased in skin impressions from large parts of the body. It is ascribed to the species Edmontosaurus annectens (originally known as Trachodon annectens), a hadrosaurid ("duck-billed dinosaur"). The mummy was found by fossil hunter Charles Hazelius Sternberg and his three sons in the Lance Formation. Although Sternberg was working under contract to the British Museum of Natural History, Henry Fairfield Osborn of the AMNH managed to secure the mummy. Osborn described the fossil in detail in 1912, coining the name "dinosaur mummy" for it—several dinosaur mummies of similar preservation have been discovered since then. This specimen has considerably influenced the scientific conception of hadrosaurids. Skin impressions found in between the fingers were once interpreted as interdigital webbing, bolstering the now-rejected perception of hadrosaurids as aquatic animals, a hypothesis that remained unchallenged until 1964. Today, the mummy is considered one of the most important fossils of the AMNH.

Contents

The mummy was discovered lying on its back, its neck twisted backwards and its forelimbs outstretched. The skeleton is complete save the tail, hind feet, and the hind portion of the pelvis. All bones are preserved unflattened and still connected to each other. Almost two-thirds of the skin is preserved. Delicate for the size of the animal, the skin includes two different types of non-overlapping scales that were between 1 and 5 millimetres (0.039 and 0.197 inches) in diameter. In contrast with other similar dinosaur mummies, the skin of AMNH 5060 was tightly attached to the bones and partially drawn into the body interior, indicating that the carcass dried out before burial. The specimen would thus constitute the fossil of a natural mummy. After dehydration, the mummy likely would have been rapidly buried by a meandering river, with bacteria consolidating the surrounding sediments, resulting in its excellent preservation.

Discovery

Only known photograph of the mummy's excavation, Wyoming, 1908 Trachodon mummy excavation.jpg
Only known photograph of the mummy's excavation, Wyoming, 1908

The mummy was discovered and excavated in 1908 by Charles Hazelius Sternberg and his three sons George, Charles Jr. and Levi. An independent fossil collector, Sternberg earned a living by selling his finds to museums in North America and Europe. The sons worked as assistants for their father, and later became renowned paleontologists. [1] Early in 1908, Sternberg planned an expedition to the Lance Creek area in eastern Wyoming, where the family had not worked before. In search of acquirers of potential fossil finds, he wrote to the British Museum of Natural History that he knew where in Wyoming to find a skull of the horned dinosaur Triceratops , knowing that the museum was lacking a good specimen; the museum agreed to buy any good fossil finds if such were made. [2] [3] The Sternbergs left their family residence in Kansas in early spring, [2] and arrived in the Lance Creek area in July. [4] Sternberg's plan foresaw the exploration of an uninhabited area of approximately 1,000 sq mi (2,600 km2) north to the North Platte River and south to the Cheyenne River in Converse County (today Niobrara County). [2] [4] The predominant badlands of this area expose sedimentary rocks of the Maastrichtian stage of the Upper Cretaceous, which today are known as the Lance Formation. The area had already been intensively explored by paleontological expeditions; before the start of his expedition, Sternberg learned that the American Museum of Natural History had been unsuccessfully working in the area for years. [4]

Although the party was enthusiastic (Sternberg's sons had never discovered dinosaur fossils before), the first weeks of search were unsuccessful. [4] [3] Sternberg wrote in his 1909 book The Life of a Fossil Hunter: [4]

Day after day hoping against hope we struggled bravely on. Every night the boys gave answer to my anxious inquiry, What have you found? Nothing.

At the end of August, Sternberg finally discovered a fossil horn weathering out of the rock; subsequent excavation revealed a 19 cm (7.5 in) long Triceratops skull. [4] [5] Soon after, George, the oldest son, found bones sticking out of the rock while prospecting new territory with Levi, the youngest son. Levi discovered more bones nearby, apparently belonging to the same skeleton. By then, the group had travelled 65 mi (105 km) from their base camp, and food was running short. Sternberg instructed George and Levi to carefully remove the sandstone above the skeleton, and Sternberg himself set off for Lusk with Charles Jr. to purchase new supplies and to initiate the shipping of the Triceratops skull to the British Museum. The third day after their father's departure, George and Levi recognized that they had found an apparently complete skeleton lying on its back. When removing a large piece of sandstone from the chest region of the specimen, George discovered, to his surprise, a perfectly preserved skin impression. [2] [4] In 1930, George remembered: [1]

The mummy on exhibit in the American Museum of Natural History (2008) Edmontosaurus mummy.jpg
The mummy on exhibit in the American Museum of Natural History (2008)

Imagine the feeling that crept over me when I realized that here for the first time a skeleton of a dinosaur had been discovered wrapped in its skin. That was a sleepless night for me.

When Sternberg finally returned at the fifth day, George and Levi had run out of food, and had eaten only potatoes for the last two days. Nevertheless, they had exposed the skeleton; the dig measured 3.6 m (12 ft) in width, 4.5 m (15 ft) in length and 3 m (9.8 ft) in depth. [2] [4]

When paleontologist Henry Fairfield Osborn, manager of the American Museum of Natural History, learned about the new find, he immediately sent staff member and paleontologist Albert Thomson, to attempt to secure it for the museum. Osborn knew about the agreement between Sternberg and the British Museum, which gave the latter rights to acquire any of the finds; he appealed to Sternberg's patriotism and promised permanent exhibition of the fossil. [2] When Thomson arrived, he was unable to evaluate the fossil as it had already been wrapped in burlap and shellac for transport, yet the asking price of $2,000 (equivalent to $65,141in 2022) was high. On the same day as Thomson, William Jacob Holland, director of the Carnegie Museum of Natural History, arrived at Lusk. Osborn, now worried about losing his opportunity, quickly acquired the specimen for an unknown sum. [6] [7]

At the American Museum, preparation of the skin impressions was completed by preparator Otto Falkenbach. [8] Subsequently, the mummy was scientifically described by Osborn himself and the famous paleontologist Barnum Brown in three articles published in 1911 and 1912, [9] [8] [10] and afterwards was put on display. In the exhibition, the mummy, protected by a glass showcase, is shown lying on its back as it was discovered; the museum decided not to restore missing parts. [2] [7] Today, the mummy is regarded as one of the museum's most important fossils. [3] It is cataloged under the specimen number AMNH 5060. [11]

Significance and classification

The mummy in bottom view, with outline drawing Osborn 1912 amnh5060 skeletal outline.png
The mummy in bottom view, with outline drawing

AMNH 5060 is considered one of the best preserved dinosaur fossils ever discovered. [11] The scientific value of the mummy lies in its exceptionally high degree of preservation, the articulation of the bones in their original anatomical position, and the extensive skin impressions enveloping the specimen. In 1911, Osborn concluded: [9]

This truly wonderful specimen, therefore, nearly doubles our previous insight into the habits and life of a very remarkable group of reptiles.

As dinosaur skin impressions were previously known only from a few fragments, the mummy became a paleontological sensation. [1] As noted by Osborn in 1912, the famous holotype specimen of Trachodon mirabilis (AMNH 5730), found in 1884 by Jacob Wortman, originally also contained extensive skin impressions, but most had been destroyed during excavation, leaving only three fragments from the tail region. As explained by Osborn, the very thin layer containing the skin impressions in the stone is difficult to detect, and many such impressions might have been lost in previous years as they were not expected nor recognized by excavators. [8]

Edmontosaurusskin2.jpg
Skin impression of the shoulder region, showing the smaller "ground tubercles" and clusters of larger "pavement tubercles"
Edmontosaurusskin.jpg
Skin impression from the abdomen of the mummy

In his 1911 description, Osborn coined the term "dinosaur mummy" for the specimen. This term was later used by some authors to refer to a handful of similar hadrosaurid ("duck-billed dinosaurs") specimens with extensive skin impressions, all of which have been discovered in North America. The second such mummy, now in the Naturmuseum Senckenberg in Frankfurt am Main, Germany, was discovered by the Sternbergs in 1910, just two years after the discovery of AMNH 5060. [12] [13] Although the skeleton of the Senckenberg mummy is more complete, it is less well preserved than AMNH 5060. [14] Another mummy specimen was discovered by Barnum Brown 1912 in Alberta, Canada, and subsequently described as the new genus Corythosaurus . Yet another mummy was discovered by Sternberg, which he sent to the British Museum during World War I. The transport ship, the SS Mount Temple, was sunk by a German raider ship in 1916, resulting in the loss of the mummy as well as many other fossils discovered by Sternberg. After these initial finds, no more mummy specimens were discovered until 2000, when a Brachylophosaurus mummy nicknamed "Leonardo" was discovered in the Judith River Formation of Montana. [14] Another Edmontosaurus mummy, nicknamed "Dakota", was excavated from the Hell Creek Formation of North Dakota in 2006. [15]

Gregory S. Paul, in 1987, stated that the life appearance of Edmontosaurus and Corythosaurus can be more accurately restored than that of any other dinosaur thanks to the well-preserved mummy specimens. Yet, evidence provided by AMNH 5060 was not regularly taken into account by paleoartists, possibly because it was described before World War I, during which activity in dinosaur research abated, only to be revitalized in the mid 1960s. [16]

AMNH 5060 belongs within the Hadrosauridae, a family of ornithischian ("bird-hipped") dinosaurs. Barnum Brown initially identified the mummy as Trachodon annectens. At the time, the genus Trachodon encompassed nearly all known hadrosaurid specimens. [17] Since 1942, the mummy was referred to the species Anatosaurus copei, [18] which in 1990 was placed within its own genus, Anatotitan. [19] Anatotitan copei is now regarded as a synonym of Edmontosaurus annectens by most researchers. [20] The majority of dinosaur skin impressions are referable to the Hadrosauridae. In North American specimens from the Maastrichtian age, skin impressions are 31 times more abundant in association with hadrosaurid specimens than with any other group. The reasons for this distribution is unclear. Of all known hadrosaurid skin impressions, 25% belong Edmontosaurus. [21]

Description and interpretation

Skin impressions at the back of the head of the mummy Edmontosaurus mummy AMNH 5060 skin back of skull.png
Skin impressions at the back of the head of the mummy

Most of the skeleton is preserved, the bones still attached to each other in their original anatomical position. The tail, hind feet, and hind portion of the pelvis had eroded away before the mummy was discovered. Fossils often become flattened during fossilization, but AMNH 5060 is preserved three-dimensionally, without significant deformation. [22] The specimen was found lying on its back, with head and neck twisted upwards, backwards, and to the right side of the body. Both knees are drawn forwards, while the forelimbs are outstretched. [8] Although the tail curves upwards and forwards over the body in many dinosaur skeletons, it was probably straight in the mummy as movement would have been restricted by ossified tendons . [23] Almost two-thirds of the total skin area is preserved, often with excellent preservation. [9] The skin impressions are pressed tightly onto the bones, and are partially drawn into the body in between the bones. When discovered, skin impressions probably encased the whole skeleton, but were partially destroyed while freeing it from the surrounding rocks. [8] Skin impressions are preserved on the forelimbs, neck and throat, and the chest, as well as on the right side of the trunk. [8] As well as the skin impressions, Sternberg noted the preservation of muscle impressions. [5] In 2007, paleontologist Kenneth Carpenter suggested that even impressions of inner organs are possibly preserved; this cannot be evaluated without detailed computer tomography and x-ray analyses. [22]

Skin

Drawing of skin impressions from the underside of the trunk Osborn 1912 trachodon scale pattern.png
Drawing of skin impressions from the underside of the trunk

The skin was thin and delicate in relation to the size of the animal. As typical for dinosaurs, the skin consisted of non-overlapping scales called tubercles. Two sorts of tubercles can be distinguished. Evenly distributed on the skin were the "ground tubercles", which were small, rounded scales between 1 and 3 mm (0.039 and 0.118 in) in diameter. The larger "pavement tubercles", less than 5 mm (0.20 in) in diameter, were pentagonal in shape, raised relative to the ground tubercles, and arranged in irregular clusters interrupting the surface formed by the lower ground tubercles. These clusters consisted of between twenty and several hundred individual pavement tubercles, and were bordered by intermediate tubercles which mediated in size and shape between ground and pavement tubercles. In the chest and abdominal region, clusters were small, oval in shape and arranged in irregular longitudinal lines. They became larger towards the sides of the trunk, where they reached 5 to 10 cm (2.0 to 3.9 in) in diameter; their shape became more irregular. The largest clusters could be found above the pelvis and measured 50 cm (20 in) in diameter; clusters of similar size were presumably present along the whole back of the animal. Muscles and joints were generally occupied with smaller tubercles to enable greater flexibility—larger tubercles are found in those parts that are tightly pressed to the bones. [14] [8] The largest surviving scales are found on the outer side of the arms; these polygonal tubercles were up to 1 cm (0.39 in) in diameter. The inner side of the arms was completely covered by small tubercles. The thigh also showed relatively small tubercles on the inner side; no impressions of the outer side are preserved. [8] A patch of skin is also present in the nostril region of the snout; these scales measured 3 to 5 mm (0.12 to 0.20 in) in diameter. [11]

Skin frill

Proposed skin frill above the neck vertebrae, photograph and interpretive drawing Edmontosaurus mummy AMNH 5060 skin frill.png
Proposed skin frill above the neck vertebrae, photograph and interpretive drawing

Above the neck vertebrae, a 25 cm (9.8 in) long and 7 to 8 cm (2.8 to 3.1 in) deep skin impression is preserved. Osborn interpreted this impression as part of an ornamental frill of loose skin that extended along the midline of the neck and back. Osborn noted that this frill was folded above the vertebral joints to ensure mobility of the neck, giving the comb a ruff-like appearance. The areas in-between the folded areas were occupied by an oval cluster of pavement tubercles. Osborn observed that the upper edge of the comb had been destroyed during the recovery of the mummy, so that the height of the crest can no longer be determined. He assumed that the frill would have extended upwards by at least one further row of clusters. An Edmontosaurus fossil described by the paleontologist John Horner in 1984 shows a regular row of rectangular lobes in the tail area. [24] Stephen Czerkas, in 1997, argued that this row would likely have extended over much of the body, including the neck, making a frill of loosely folded skin seem unlikely. Instead, the skin impression described by Osborn would have come from the fleshy crest above the downward-curved neck spine. This neck crest would have been much deeper than previously assumed, connecting the base of the head to the shoulder region. The observed folding would have been a consequence of mummification and caused by a withered nuchal ligament. [25]

Hand

AMNH 5060 allowed for the first accurate reconstruction of the hand skeleton of a hadrosaurid. Barnum Brown, in 1912, showed that the carpus of the mummy did not consist of two complete rows of ossified carpals, as Othniel Charles Marsh had assumed in his reconstruction of 1892, but that only two ossified carpals were present. In the mummy, these elements lie directly above each other and above the third metacarpal. This arrangement probably reflects the original position in the living animal since both hands show the same arrangement. [26] [10] Brown further pointed out that the first finger was missing and the second to fifth fingers each consisted of three phalanges. Marsh had reconstructed the first finger as a reduced element with only two phalanges, while the fifth finger was absent in his reconstruction. [10]

Drawing of the upper- (left) and underside (right) of the right hand, showing the metacarpal bones and fingers enclosed by the skin cover. Edmontosaurus mummy AMNH 5060 manus Osborn 1912.png
Drawing of the upper- (left) and underside (right) of the right hand, showing the metacarpal bones and fingers enclosed by the skin cover.

The fingers of the mummy are partially connected to each other by an envelope of skin impressions. In 1912, Osborn suggested that this skin envelope represented webbing between fingers and that the forelimb would have functioned as a paddle, which he considered a clear indication of an aquatic lifestyle for Trachodon (= Edmontosaurus) and presumably other representatives of the Trachodontidae (= Hadrosauridae). The webbing would not only have connected the fingers with each other, but would also have extended up to 5 cm (2.0 in) beyond the fingertips. Furthermore, Osborn noted the lack of clearly pronounced hooves and large fleshy foot pads on the forelimb—features to be expected in a primarily land-dwelling animal. [8] With the Senckenberg mummy, another Trachodon specimen with supposed webbing was discovered in 1910. A possible aquatic lifestyle of hadrosaurids had been proposed before, in particular based on the great depth and flat sides of a well-preserved tail discovered by Brown in 1906. This hypothesis appeared to be in accordance with an 1883 account by Edward Drinker Cope describing hadrosaurid teeth as "slightly attached" and "delicate", and therefore suitable for feeding on soft aquatic plants. It was only after the discovery of the two mummies that the hypothesis of an aquatic lifestyle became the undisputed doctrine. [27] [28] [29] Charles H. Sternberg wrote in 1917:

I was reluctently giving up Marsh's and Cope's ideas; they believed these dinosaurs lived on land, feeding off the tender foliage of trees [...] Entirely different views are held now [...] These (the duck-bills) lived in the water instead on land, and consequently they had thin skin and strong paddles, or rather webbed feet. [12]

1909 reconstruction of Trachodon (Edmontosaurus) drawn by Charles R. Knight under supervision of Henry Fairfield Osborn. The fingers are shown to be joined into a paddle, as was inferred from the apparent interdigital webbing seen in the mummy. Edmontosaurus annectens, by Charles R. Knight.jpg
1909 reconstruction of Trachodon (Edmontosaurus) drawn by Charles R. Knight under supervision of Henry Fairfield Osborn. The fingers are shown to be joined into a paddle, as was inferred from the apparent interdigital webbing seen in the mummy.

It was not until 1964 that John H. Ostrom voiced doubts about the webbed-finger hypothesis. Ostrom was able to show that hadrosaurids did not feed on soft aquatic plants as previously assumed, but that their elaborate chewing apparatus was designed to crush resistant plant material such as conifers. The skeletal anatomy would furthermore indicate a highly specialized two-legged locomotion on land. Ostrom noted that hadrosaurids showed no osteoderms or similar structures to defend against predators that are found in many other herbivorous dinosaurs, and suggested that the webs may have been used to allow escape into the water in case of danger. [29] Robert Bakker, in 1986, argued that the animal had no webs, and that the skin between its fingers was the remnant of a fleshy pad enveloping the hand that had dried out and flattened during mummification. Very similar skin structures originating from foot pads can be found on modern-day mummified camel carcasses. Furthermore, Bakker argued that the fingers were short and could hardly have been spread apart, which distinguishes them fundamentally from the long, spread toes of today's paddling animals such as ducks. [28] Bakker concluded:

Far from being the best, the duckbills must have been the clumsiest and slowest swimmers in all the Dinosauria. [28]

Today, the webbing hypothesis is widely refuted. [27] [28]

Phil Senter, in 2012, examined AMNH 5060 and several other hadrosaurid specimens to reconstruct the orientation of the hand. While trackway evidence indicates that the palm was directed inwards and only slightly backwards, many hadrosaurid skeletons have instead been mounted with the palm of the hand facing backwards. In such reconstructions, the radius either crosses the ulna (instead of being parallel) or connects to the inner of the two condyles of the humerus (instead of to the outer). Although the palms of the mummy face backwards, this is because the carcass lay on its back, which caused the forelimbs to sprawl and the humeri to detach from the shoulder joints. In both forelimbs of the mummy, radius and ulna are parallel to each other and the radius is connected to the outer condyle, confirming that the palm must have faced inwards in life. [30]

Ossified tendons and stomach contents

In 1909, Charles H. Sternberg noted that hundreds of ossified tendons were preserved along the dorsal spine, each about as thick as a pencil. Sternberg speculated that these tendons served as defensive structures and could not be penetrated by the claws of predatory dinosaurs such as the contemporary Tyrannosaurus . [4] Today it is known that these tendons stiffened the spine, probably to counteract bending forces on the spine during walking. Although the tail is not preserved in the mummy, other Edmontosaurus specimens show that it had also been stiffened by such tendons. [14]

Sternberg also reported carbonized food remains discovered in the stomach region of the mummy. [5] [31] An analysis of these remains has not yet been performed. [32] Kräusel, in 1922, investigated a concretion of brown plant material in the Senckenberg mummy that consisted mainly of branches and needles of conifers. In both mummies, the possibility cannot be ruled out that the plant material was washed into the abdominal cavity only after the death of the animal. [32]

Attempts to reconstruct color patterns

Modern reconstruction of Edmontosaurus annectens Anatotitan BW.jpg
Modern reconstruction of Edmontosaurus annectens

Osborn observed in 1912 that clusters of "pavement tubercles" were more numerous on the upper sides of the trunk and limbs than on the underside. Consequently, they would dominate in areas that would have been exposed to the sun when the animal was alive; in many reptiles living today, these sun-exposed areas contain the most pigment. From these observations, Osborn hypothesized a connection between pigmentation and scaling: the "pavement tubercle" clusters might have represented dark-colored areas on a bright base; the irregular distribution of the clusters would indicate an irregular color pattern; and the most elaborate color pattern would be present on the skin frill of the neck. Osborn did admit that in today's lizards the distribution of pigments is largely independent of the type of scaling. [8]

Catherine Forster, in 1997, stated that color information can in principle not be derived from the skin impressions of dinosaur mummies. [27] In 2015, Philip Manning and colleagues concluded that skin in dinosaur mummies is not simply preserved as an impression but contains original biomolecules or their derivatives. These researchers inferred the presence of melanin pigments in the skin of another Edmontosaurus mummy nicknamed Dakota. While clarifying that a reconstruction of the coloration is currently not possible given the many different factors that influence coloration, they remarked that the melanin distribution may potentially allow for deriving a monochrome (black-and-white) picture of the animal's pigmentation pattern. Any chemical analysis of AMNH 5060 would be problematic, however, as consolidating chemicals have been applied to its skin for preservation. [13]

Nostrils

The Senckenberg mummy (on exhibition in the Naturmuseum Senckenberg in Frankfurt am Main, Germany) Edmontosaurus mummy 6756.jpg
The Senckenberg mummy (on exhibition in the Naturmuseum Senckenberg in Frankfurt am Main, Germany)

As in other Edmontosaurus specimens, the sides of the snout were excavated by a large and elongated depression, the circumnarial depression, which housed the nostrils. As confirmed by AMNH 5060, the fleshy nostril would not have occupied the entire depression. Richard Swann Lull and Nelda Wright, in a 1942 publication, suggested that skin impressions are preserved within the depression; a deepening in this possible skin in the front part of the depression could mark the position of the fleshy nostrils. This skin is smooth and wrinkled and tubercles are absent, in contrast with the rest of the body. [18] Accordingly, paleoart often shows the remainder of the depression being occupied by a scaleless, inflatable bladder. In 2015, however, Albert Prieto-Márquez and Jonathan Wagner found low and subtle impressions of polygonal scales in the frontmost part of the depression behind the beak. These scales suggest that the rest of the skin that once covered the depression might have been scaly. For this reason, these authors preferred an older interpretation by James A. Hopson from 1975, who proposed a scaly bladder with brightly colored skin between the scales which became visible only when the bladder was inflated. [11] [33]

Prieto-Márquez and Wagner further suggested that sedimentary ridges within the depression likely represent former soft-tissue structures. The rear edge of the bony nostril was extended towards the front by a flange which was probably a cartilaginous structure, indicating that the rear part of the bony nostril was covered by soft tissue, forming a nasal cavity. As this covering was apparently restricted to the rear part, it is likely that the opening of the nasal passage into the skull interior would also have been situated there. A ridge running diagonally across the depression might have been a cartilaginous septum supporting a nasal cavity. The ridge ends in the lower front of the depression, which is the most likely location for the fleshy nostril. The nasal cavity that this ridge once supported would therefore have been the main nasal air passage. [11]

Taphonomy

Thorax region of the mummy showing skin impressions that tightly adhere to the bones Edmontosaurus mummy AMNH 5060 thorax skin Osborn 1912.png
Thorax region of the mummy showing skin impressions that tightly adhere to the bones

Several authors discussed the question of how the animal died and what circumstances led to its exceptionally good preservation. Charles H. Sternberg, in 1909, [4] [5] and Charles M. Sternberg, in 1970, [34] assumed that the animal died in water. The gases accumulating in the abdomen after death would have floated the carcass, with the belly pointing upwards and the head moving into its final position under the shoulder. The carcass would then have sunk to the bottom to come to rest on its back, and become covered by sediments. The skin would have been drawn into the body cavity by the load of the sediments [34] or due to the escape of the gases. [4] Osborn suggested another scenario in 1911: the animal could have died a natural death, and the carcass would have been exposed to the sun for a longer time in a dry riverbed, unaffected by scavengers. Muscles and intestines would have completely dried out and thus shrunk, whereby the hard and leathery skin sank into the body cavity and finally adhered tightly to the bones, forming a natural mummy. At the end of the dry season, the mummy would have been hit by a sudden flood, transported a distance and quickly covered with sediments at the embedding site. The fine grain size of the sediment (fine river sand with sufficient clay content) would have led to the perfect impressions of the filigree skin structures before the hardened skin could soften. [9] Today Osborn's hypothesis is considered the most probable. [14] [22]

Aerial photograph of a meandering river, showing the sliding slopes (sand point bar) on the inside and the impact slopes (cutbank) on the outside of the river loops Point bar and cut bank.jpg
Aerial photograph of a meandering river, showing the sliding slopes (sand point bar) on the inside and the impact slopes (cutbank) on the outside of the river loops

The cause of death of the specimen can only be speculated about. Kenneth Carpenter, in 1987 and 2007, considered starvation during a drought to be the most likely cause of death, given the similarity of the mummy to cadavers of today's animals found during droughts. The loss of muscle mass due to malnutrition could also partly explain why the mummy's skin was sunken around the bones. [23] [22] Furthermore, the carcass was not affected by scavengers. This could have been due to a drought keeping scavengers away from the affected area or leading to the accumulation of many carcasses that could not all be handled by the existing scavengers, as can be observed during modern droughts. Furthermore, Carpenter noted that today's large even-toed ungulates are closely bound to water during droughts to prevent overheating. The main cause of death of these animals during droughts is starvation, not thirst. The mummy was discovered in river sediments; therefore the animal likely died near a river or at least a dry riverbed. [22]

The sediments of the discovery site were deposited by a meandering river. This type of river constantly migrates its riverbed by eroding the cut bank (the bank on the outside of the river bends) and depositing sediment on the slip-off slope (on the inside of the bends). A slip-off slope forms a characteristic sediment sequence known as a point bar. Carpenter concluded from a photograph taken during the excavation that the mummy was discovered within such a point bar, and suspected that the carcass was embedded during flood events after the end of a drought. The carcass would have been an obstacle for the current, resulting in its rapid burial: as water flowed around the carcass, its velocity would have increased, leading to a removal of sediment. The carcass would have successively sunk into the resulting depression. Additional sediment that led to further burial would have originated from cut banks collapsing into the river further upstream, which is indicated by the high clay content of the sandstones. The sediment load carried by the river would have been deposited as current velocity, and thus carrying capacity, diminished, which is the case at the end of a flood. The carcass would have been embedded within hours or days. [22]

The taphonomic processes that affected the mummy after its burial are difficult to reconstruct as samples from the surrounding sedimentary rocks do not exist. Probably a slow bacterial decay of the carcass was initiated first. Carpenter emphasized that the excellent preservation of the fossil was made possible only by minerals formed by bacteria (biomineralization). These minerals would have solidified the clay-rich sand surrounding the mummy, resulting in its unusual three-dimensional preservation. At the same time, this solidified sediment would have preserved the skin impressions at the contact surface between sand and cadaver. The mineralization furthermore anchored the bones in their anatomical position and thus prevented them from falling apart as the soft tissue decayed. Important minerals formed after burial would include calcium carbonate (calcite) and iron carbonate (siderite); the latter, after being oxidized to limonite, would have been responsible for the rusty color of the mummy. After the more or less complete decomposition of the soft tissue, a cavity remained in the cemented sediment that was subsequently filled with sand, together with the skin impression it contained. [22]

Related Research Articles

<i>Hadrosaurus</i> Hadrosaurid dinosaur genus from the Late Cretaceous

Hadrosaurus is a genus of hadrosaurid ornithopod dinosaurs that lived in North America during the Late Cretaceous Period in what is now the Woodbury Formation about 78-80 Ma. The holotype specimen was found in fluvial marine sedimentation, meaning that the corpse of the animal was transported by a river and washed out to sea.

<span class="mw-page-title-main">Hadrosauridae</span> Extinct family of dinosaurs

Hadrosaurids, or duck-billed dinosaurs, are members of the ornithischian family Hadrosauridae. This group is known as the duck-billed dinosaurs for the flat duck-bill appearance of the bones in their snouts. The ornithopod family, which includes genera such as Edmontosaurus and Parasaurolophus, was a common group of herbivores during the Late Cretaceous Period. Hadrosaurids are descendants of the Late Jurassic/Early Cretaceous iguanodontian dinosaurs and had a similar body layout. Hadrosaurs were among the most dominant herbivores during the Late Cretaceous in Asia and North America, and during the close of the Cretaceous several lineages dispersed into Europe, Africa, and South America.

<i>Corythosaurus</i> Extinct genus of dinosaurs

Corythosaurus is a genus of hadrosaurid "duck-billed" dinosaur from the Late Cretaceous period, about 77–75.7 million years ago, in what is now western North America. Its name is derived from the Greek word κόρυς, meaning "helmet", named and described in 1914 by Barnum Brown. Corythosaurus is now thought to be a lambeosaurine, thus related to Lambeosaurus, Nipponosaurus, Velafrons, Hypacrosaurus, and Olorotitan. Corythosaurus has an estimated length of 7.7–9 metres (25–30 ft) and has a skull, including the crest, that is 70.8 centimetres tall.

<i>Edmontosaurus</i> Hadrosaurid dinosaur genus from Late Cretaceous US and Canada

Edmontosaurus, often colloquially and historically known as Anatosaurus or Anatotitan, is a genus of hadrosaurid (duck-billed) dinosaur. It contains two known species: Edmontosaurus regalis and Edmontosaurus annectens. Fossils of E. regalis have been found in rocks of western North America that date from the late Campanian age of the Cretaceous period 73 million years ago, while those of E. annectens were found in the same geographic region from rocks dated to the end of the Maastrichtian age, 66 million years ago. Edmontosaurus was one of the last non-avian dinosaurs to ever exist, and lived alongside dinosaurs like Triceratops, Tyrannosaurus, Ankylosaurus, and Pachycephalosaurus shortly before the Cretaceous–Paleogene extinction event.

<span class="mw-page-title-main">Charles Hazelius Sternberg</span> American paleontologist

Charles Hazelius Sternberg was an American fossil collector and paleontologist. He was active in both fields from 1876 to 1928, and collected fossils for Edward Drinker Cope and Othniel C. Marsh, and for the British Museum, the San Diego Natural History Museum and other museums.

<i>Pentaceratops</i> Extinct genus of dinosaurs

Pentaceratops is a genus of herbivorous ceratopsid dinosaur from the late Cretaceous Period of what is now North America. Fossils of this animal were first discovered in 1921, but the genus was named in 1923 when its type species, Pentaceratops sternbergii, was described. Pentaceratops lived around 76–73 million years ago, its remains having been mostly found in the Kirtland Formation in the San Juan Basin in New Mexico. About a dozen skulls and skeletons have been uncovered, so anatomical understanding of Pentaceratops is fairly complete. One exceptionally large specimen later became its own genus, Titanoceratops, due to its more derived morphology, similarities to Triceratops, and lack of unique characteristics shared with Pentaceratops.

<i>Lambeosaurus</i> Hadrosaurid dinosaur genus from Late Cretaceous US and Canada

Lambeosaurus is a genus of hadrosaurid dinosaur that lived about 75 million years ago, in the Late Cretaceous period of North America. This bipedal/quadrupedal, herbivorous dinosaur is known for its distinctive hollow cranial crest, which in the best-known species resembled a mitten. Several possible species have been named, from Canada, the United States, and Mexico, but only the two Canadian species are currently recognized as valid.

<i>Brachylophosaurus</i> Extinct genus of reptiles

Brachylophosaurus was a mid-sized member of the hadrosaurid family of dinosaurs. It is known from several skeletons and bonebed material from the Judith River Formation of Montana, the Wahweap Formation of Utah and the Oldman Formation of Alberta, living about 81-76.7 million years ago.

<i>Saurolophus</i> Hadrosaurid dinosaur genus from the Late Cretaceous period

Saurolophus is a genus of large hadrosaurid dinosaur from the Late Cretaceous period of Asia and North America, that lived in what is now the Horseshoe Canyon and Nemegt formations about 70 million to 66 million years ago. It is one of the few genera of dinosaurs known from multiple continents. The type species, S. osborni, was described by Barnum Brown in 1912 from Canadian fossils. A second valid species, S. angustirostris, is represented by numerous specimens from Mongolia, and was described by Anatoly Konstantinovich Rozhdestvensky.

<i>Monoclonius</i> Extinct genus of dinosaurs

Monoclonius is an extinct genus of herbivorous ceratopsian dinosaur found in the Late Cretaceous layers of the Judith River Formation in Montana, United States, and the uppermost rock layers of the Dinosaur Park Formation in Alberta, Canada dated to between 75 and 74.6 million years ago.

<i>Thespesius</i> Dubious extinct genus of dinosaurs

Thespesius is a dubious genus of hadrosaurid dinosaur from the late Maastrichtian-age Upper Cretaceous Lance Formation of South Dakota Size 4,8(16ft) Height 18(60ft) and 18 Tons

<i>Mandschurosaurus</i> Extinct genus of dinosaurs

Mandschurosaurus is an extinct genus of hadrosaurids based on material from the Late Cretaceous of China and possibly also the Early Cretaceous of Laos. It was the first dinosaur genus named from China.

<i>Prosaurolophus</i> Extinct genus of dinosaurs

Prosaurolophus is a genus of hadrosaurid dinosaur from the Late Cretaceous of North America. It is known from the remains of at least 25 individuals belonging to two species, including skulls and skeletons, but it remains obscure. Its fossils have been found in the late Campanian-age Upper Cretaceous Dinosaur Park Formation in Alberta, and the roughly contemporaneous Two Medicine Formation in Montana, dating to around 75.5-74.0 million years ago. Its most recognizable feature is a small solid crest formed by the nasal bones, sticking up in front of the eyes.

<span class="mw-page-title-main">Dinosaur mummy</span>

Dinosaur mummies are exceptionally preserved dinosaur fossils with skin traces covering substantial parts of the body. The term was coined by Henry Fairfield Osborn in 1911 for an Edmontosaurus specimen discovered in 1908 by fossil hunter Charles Hazelius Sternberg and his three sons in Wyoming. A handful of similar dinosaur mummies had been found since. These include two Edmontosaurus specimens subsequently discovered by the Sternberg family, one of which was sold to Germany, while the other was lost during World War I when it was shipped to England and the ship was sunk. Barnum Brown, in 1912, discovered a mummy he described as a new genus, Corythosaurus. In 1999, another Edmontosaurus mummy nicknamed "Dakota" was discovered, and in 2000, a Brachylophosaurus mummy was nicknamed "Leonardo".

<i>Edmontosaurus regalis</i> Extinct species of dinosaur

Edmontosaurus regalis is a species of comb-crested hadrosaurid dinosaur. Fossils of E. regalis have been found in rocks of western North America that date from the late Campanian age of the Cretaceous Period 73 million years ago, but it may have possibly lived into the early Maastrichtian.

<i>Edmontosaurus annectens</i> Hadrosaurid species from the Late Cretaceous Period

Edmontosaurus annectens, often colloquially and historically known as the Anatosaurus, is a species of flat-headed saurolophine hadrosaurid dinosaur from the late Maastrichtian age at the very end of the Cretaceous period, in what is now western North America. Remains of E. annectens have been preserved in the Frenchman, Hell Creek, and Lance Formations. All of these formations are dated to the late Maastrichtian age of the Late Cretaceous period, which represents the last three million years before the extinction of the dinosaurs. E. annectens is also found in the Laramie Formation and magnetostratigraphy suggests an age of 69-68 Ma for the Laramie Formation. Edmontosaurus annectens is known from numerous specimens, including at least twenty partial to complete skulls, discovered in the U.S. states of Montana, South Dakota, North Dakota, Wyoming, and Colorado, as well as the Canadian province of Saskatchewan. It had an extremely long and low skull and was quite a large animal, growing up to approximately 12 metres (39 ft) in length and 5.6 metric tons in average asymptotic body mass, although it could have been even larger. E. annectens exhibits one of the most striking examples of the "duckbill" snout that is common to hadrosaurs. It has a long taxonomic history and specimens have at times been classified as Diclonius, Trachodon, Hadrosaurus, Claosaurus, Thespesius, Anatosaurus, and Anatotitan before all being grouped together in Edmontosaurus

<span class="mw-page-title-main">Dakota (fossil)</span> Fossil Edmontosaurus annectens

Dakota is the nickname given to an important Edmontosaurus fossil found in the Hell Creek Formation in North Dakota. It is about 67 million years old, placing it in the Maastrichtian, the last stage of the Cretaceous period. It was about 12 m (40 ft) long and weighed about 7-8 tons.

<span class="mw-page-title-main">Paleontology in Kansas</span>

Paleontology in Kansas refers to paleontological research occurring within or conducted by people from the U.S. state of Kansas. Kansas has been the source of some of the most spectacular fossil discoveries in US history. The fossil record of Kansas spans from the Cambrian to the Pleistocene. From the Cambrian to the Devonian, Kansas was covered by a shallow sea. During the ensuing Carboniferous the local sea level began to rise and fall. When sea levels were low the state was home to richly vegetated deltaic swamps where early amphibians and reptiles lived. Seas expanded across most of the state again during the Permian, but on land the state was home to thousands of different insect species. The popular pterosaur Pteranodon is best known from this state. During the early part of the Cenozoic era Kansas became a savannah environment. Later, during the Ice Age, glaciers briefly entered the state, which was home to camels, mammoths, mastodons, and saber-teeth. Local fossils may have inspired Native Americans to regard some local hills as the homes of sacred spirit animals. Major scientific discoveries in Kansas included the pterosaur Pteranodon and a fossil of the fish Xiphactinus that died in the act of swallowing another fish.

<i>Borealopelta</i> Extinct genus of dinosaurs

Borealopelta is a genus of nodosaurid ankylosaur from the Lower Cretaceous of Alberta, Canada. It contains a single species, B. markmitchelli, named in 2017 by Caleb Brown and colleagues from a well-preserved specimen known as the Suncor nodosaur. Discovered at an oil sands mine north of Fort McMurray, Alberta, the specimen is remarkable for being among the best-preserved dinosaur fossils of its size ever found. It preserved not only the armor (osteoderms) in their life positions, but also remains of their keratin sheaths, overlying skin, and stomach contents from the animal's last meal. Melanosomes were also found that indicate the animal had a reddish skin tone.

<i>Edmontosaurus</i> mummy SMF R 4036 Dinosaur fossil in Naturmuseum Senckenberg

The Edmontosaurus mummy SMF R 4036 is an exceptionally well-preserved dinosaur fossil in the collection of the Naturmuseum Senckenberg (SM) in Frankfurt am Main, Germany. Found in 1910 in Wyoming, United States, it is ascribed to the species Edmontosaurus annectens, a member of the Hadrosauridae. The fossil comprises a nearly complete skeleton that was found wrapped in impressions of its skin, a rare case of exceptional preservation for which the term "dinosaur mummy" has been used. Notably, the horny beak is preserved with this specimen. Plant remains found within the thorax cavity had been interpreted as stomach contents, although later research questioned this identification. The mummy's hands are wrapped in skin impression, which was interpreted as evidence for interdigital webbing and an aquatic lifestyle in hadrosaurids; this hypothesis, although universally accepted once, is now widely refused. SMF R 4036 is one of the four best preserved hadrosaurid mummies, and was the second to be discovered. The find was made by fossil hunter Charles Hazelius Sternberg and his sons, who sold their numerous finds to various museums in North America and Europe. Only two years earlier the Sternbergs had discovered the Edmontosaurus mummy AMNH 5060 in the same region, which is now on display at the American Museum of Natural History (AMNH) in New York City.

References

  1. 1 2 3 Colbert, Edwin Harris (1984). The Great Dinosaur Hunters and Their Discoveries. New York, NU: Courier Dover Publications. pp. 184, 195–197. ISBN   0-486-24701-5.
  2. 1 2 3 4 5 6 7 Rogers, Katherine (1999). The Sternberg Fossil Hunters: A Dinosaur Dynasty. Missoula, Montana: Mountain Press Publishing Company. pp. 107–108, 110–115. ISBN   0-878-42404-0.
  3. 1 2 3 Preston, Douglas (1993). "Sternberg and the dinosaur mummy". Dinosaurs in the Attic: An Excursion Into The American Museum of Natural History. New York, NY: Macmillan Publishers. pp. 73–77. ISBN   0-312-10456-1.
  4. 1 2 3 4 5 6 7 8 9 10 11 Sternberg, Charles H. (1909). The Life of a Fossil Hunter. New York, NY: Henry Holt and Company. pp.  270–277. OCLC   876719.
  5. 1 2 3 4 Sternberg, Charles H. (1909). "Expedition to the Laramie Beds of Converse County, Wyoming". Transactions of the Kansas Academy of Science. 22: 113–116. doi:10.2307/3624729. JSTOR   3624729.
  6. Switek, Brian. "How Much for a Mummy Dinosaur?". Smithsonian. Archived from the original on August 21, 2017. Retrieved February 9, 2016.
  7. 1 2 Norell, Mark A.; Gaffney, Eugène S.; Dingus, Lowell (2000). "Edmontosaurus annectens" . Discovering Dinosaurs: Evolution, Extinction, and the Lessons of Pre-History. Oakland: University of California Press. pp.  154–155. ISBN   0-520-22501-5.
  8. 1 2 3 4 5 6 7 8 9 10 Osborn, Henry Fairfield (1912). "Integument of the iguanodont dinosaur Trachodon". Memoirs of the American Museum of Natural History. 1: 33–35, 46–54.
  9. 1 2 3 4 5 Osborn, Henry Fairfield (1911). "A Dinosaur Mummy". The American Museum Journal. New York, NY. 11: 7–11.
  10. 1 2 3 Brown, Barnum (1912). "The osteology of the manus in the family Trachodontidae". Bulletin of the American Museum of Natural History. 31: 105–108.
  11. 1 2 3 4 5 Prieto-Márquez, Albert; Wagner, Jonathan R. (2015). "Soft-tissue structures of the nasal vestibular region of saurolophine hadrosaurids (Dinosauria, Ornithopoda) revealed in a "mummified" specimen of Edmontosaurus annectens". In Eberth, David A.; Evans, David C. (eds.). Hadrosaurs. Bloomington and Indianapolis: Indiana University Press. pp. 591–599. ISBN   978-0-253-01385-9.
  12. 1 2 Sternberg, Charles H. (1917). Hunting Dinosaurs in the Bad Lands of the Red Deer River, Alberta, Canada: A Sequel to The Life of a Fossil Hunter. Lawrence, Kansas: The World Company Press. pp. 7–8.
  13. 1 2 Manning, Phillip L.; Wogelius, Roy A.; Van Dongen, Bart; Lyson, Tyler R.; Bergmann, Uwe; Webb, Sam; Buckley, Michael; Egerton, Victoria M.; Sellers, William I. (2015). "The role and biochemistry of melanin pigment in the exceptional preservation of hadrosaur skin". In Eberth., David A.; Evans, David C. (eds.). Hadrosaurs. Bloomington and Indianapolis: Indiana University Press. pp. 600–610. ISBN   978-0-253-01385-9.
  14. 1 2 3 4 5 Manning, Phillip Lars (2008). "Chapter four: Dinosaur Mummies". Grave Secrets of Dinosaurs: Soft Tissues and Hard Science . Washington, D.C.: National Geographic. ISBN   978-1426202193.
  15. Manning, Phillip Lars (2008). "Chapter five: Manchester in the badlands". Grave Secrets of Dinosaurs: Soft Tissues and Hard Science . Washington, D. C.: National Geographic. ISBN   978-1426202193.
  16. Paul, Gregory S. (1987). "The science and art of restoring the life appearance of dinosaurs and their relatives; a rigorous how-to guide". In Czerkas, S.J.; Olson, E.C. (eds.). Dinosaurs, Past and Present. 2. University of Washington Press. pp.  40–42. ISBN   978-0-295-96570-3.
  17. Creisler, Benjamin S. (2007). "Deciphering duckbills: a history in nomenclature". In Carpenter, Kenneth (ed.). Horns and Beaks. Ceratopsian and Ornithopod Dinosaurs. Bloomington: Indiana University Press. pp. 196, 198. ISBN   978-0253348173.
  18. 1 2 Lull, Richard Swann; Wright, Nelda E. (1942). "Hadrosaurian dinosaurs of North America". Geological Society of America Special Papers. 40: 113. doi:10.1130/SPE40-p1.
  19. Chapman, Ralph E.; Brett-Surman, Michael K. (1990). "Morphometric observations on hadrosaurid ornithopods". In Carpenter, Kenneth; Currie, Philip J. (eds.). Dinosaur Systematics: Perspectives and Approaches. Cambridge, England: Cambridge University Press. p. 177. ISBN   0-521-43810-1.
  20. Horner, John R.; Weishampel, David B.; Forster, Catherine A. (2004). "Hadrosauridae". In Weishampel, David B.; Osmólska, Halszka; Dodson, Peter (eds.). The Dinosauria (2nd ed.). Berkeley, CA: University of California Press. p. 460. ISBN   0-520-24209-2.
  21. Davis, Matt (2012). "Census of dinosaur skin reveals lithology may not be the most important factor in increased preservation of hadrosaurid skin". Acta Palaeontologica Polonica. 59 (3): 601–605. doi: 10.4202/app.2012.0077 .
  22. 1 2 3 4 5 6 7 Carpenter, Kenneth (2007). "How to make a fossil: Part 2 – Dinosaur Mummies and other soft tissue". The Journal of Paleontological Science: 5–14.
  23. 1 2 Carpenter, Kenneth (1987). "Paleoecological significance of droughts during the Late Cretaceous of the Western Interior". In Currie, P.M.; Koster, E.H. (eds.). Short Papers. Fourth symposium on Mesozoic terrestrial ecosystems. Drumheller, August 10–14.
  24. Horner, John R. (1984). "A "segmented" epidermal tail frill in a species of hadrosaurian dinosaur". Journal of Paleontology. 58 (1): 270–271.
  25. Czerkas, Stephen A. (1997). "Skin". In Currie, Philip J.; Padian, Kevin (eds.). Encyclopedia of Dinosaurs. San Diego, CA: Academic Press. pp. 671–672. ISBN   978-0122268106.
  26. Brett-Surman, Michael K.; Wagner, Jonathan R. (2007). "Discussion of character analysis of the appendicular anatomy in Campanian and Maastrichtian North American hadrosaurids – variation and ontogeny". In Carpenter, Kenneth (ed.). Horns and Beaks: Ceratopsian and Ornithopod Dinosaurs. Bloomington, Indiana: Indiana University Press. pp. 143–144. ISBN   978-0-253-34817-3.
  27. 1 2 3 Forster, Catherine A. (1997). "Hadrosauridae". In Currie, Philip J.; Padian, Kevin (eds.). Encyclopedia of Dinosaurs. San Diego, CA: Academic Press. pp. 294, 297. ISBN   978-0122268106.
  28. 1 2 3 4 Bakker, Robert T. (1986). The Dinosaur Heresies . New York, NY: William Morrow and Company, Inc. pp.  146–159. ISBN   0-688-04287-2.
  29. 1 2 Ostrom, John H. (1964). "A reconsideration of the paleoecology of hadrosaurian dinosaurs". American Journal of Science. 262 (8): 975–977, 995–996. Bibcode:1964AmJS..262..975O. doi: 10.2475/ajs.262.8.975 .
  30. Senter, Phil (2012). "Forearm orientation in Hadrosauridae (Dinosauria: Ornithopoda) and implications for museum mounts". Palaeontologia Electronica. 15 (3, 30A): 1–10. doi: 10.26879/330 .
  31. Sternberg, Charles H. (1909). "A New Trachodon from the Laramie Beds of Converse County, Wyoming". Science. 29 (749): 753–754. doi:10.1126/science.29.749.747. PMID   17840008.
  32. 1 2 Currie, Philip J.; Koppelhus, Eva B.; Muhammad, A. Fazal (1995). ""Stomach" contents of a hadrosaur from the Dinosaur Park Formation (Campanian, Upper Cretaceous) of Alberta, Canada". In Sun, Ailing; Wang, Yuanqing (eds.). Sixth Symposium on Mesozoic Terrestrial Ecosystems and Biota, Short Papers. Beijing: China Ocean Press. pp. 111–114.
  33. Hopson, James A. (1975). "The evolution of cranial display structures in hadrosaurian dinosaurs". Paleobiology. 1 (1): 21–43. Bibcode:1975Pbio....1...21H. doi:10.1017/S0094837300002165. S2CID   88689241.
  34. 1 2 Sternberg, Charles M. (1970). "Comments on dinosaurian preservation in the Cretaceous of Alberta and Wyoming". Publications in Palaeontology. Ottawa (4): 3–4.