Edrioasteroidea

Last updated

Edrioasteroids
Temporal range: Middle Cambrian–Early Permian
O
S
D
C
P
T
J
K
Pg
N

Possible Ediacaran occurrence
Streptaster vorticellatus (13 mm across) from the Bellevue Formation (Upper Ordovician) at the Maysville West roadcut of northern Kentucky, USA.jpg
Streptaster vorticellatus (13 mm across) from the Upper Ordovician of Kentucky, USA
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Echinodermata
Subphylum: Crinozoa
Class: Edrioasteroidea
Billings 1858
Genera

See text

Edrioasteroidea is an extinct class of echinoderms. The living animal would have resembled a pentamerously symmetrical disc or cushion. They were obligate encrusters and attached themselves to inorganic or biologic hard substrates (frequently hardgrounds or brachiopods). [1] A 507 million years old species, Totiglobus spencensis, is actually the first known echinoderm adapted to live on a hard surface after the soft microbial mats that covered the seafloor were destroyed in the Cambrian substrate revolution. [2]

Contents

The oldest undisputed fossils of Edrioasteroidea are known from Cambrian (Stage 3, about 515-520 Ma ago) of Laurentia and are among the oldest known fossils of echinoderms. Some authors propose that an enigmatic Ediacaran (about 600 Ma) organism Arkarua is also an edrioasteroid, but this interpretation did not gain wide acceptance. [3] Last edrioasteroids are known from Permian (Late Kungurian, about 270-280 Ma). [4]

Anatomy

The body plan for this class was simple: a main body (theca), composed of many small plates, with a peripheral rim for attachment, and (in some species) a pedunculate zone for extension and retraction. Circling and sometimes attached to the body was a peripheral rim of plates. The main feature consisted of five arms, or ambulacra, in the body wall radiating outwards from the central mouth. The ambulacra grew either curved or straight. When curved, they may all turn in the same direction or else one or two on the right side will curve opposite the others. The ambulacra are built of underlying floor plates that form the food groove and protective cover plates that roof the food groove. The anus was under the mouth region and was made of small triangular plates to form a cone-shaped area. The bottom surface of the theca is unplated.

Edrioasteroid species are distinguished by differences in the ambulacral curvature, the relationships of the cover plates, and ornamentation. The mode of life was sessile; they were often attached via a stalk made of small plates to a hard object such as a carbonate hardground or shell. Several examples of epibiotic attachment have also been noted.

In the discocystinids, the area between the body and peripheral rim could be extended and retracted; in so doing the two were separated. The peripheral rim became the base of the stalk which was attached to a surface. Underneath the body was a recumbent zone, which was about 12 millimetres (0.47 in) wide in the genus Giganticlavus, followed by the pedunculate zone attached to the peripheral rim of 12 millimetres (0.47 in). [5]

Taxonomy

List of genera

A very incomplete list of some genera.

Related Research Articles

<span class="mw-page-title-main">Ordovician</span> Second period of the Paleozoic Era 485–444 million years ago

The Ordovician is a geologic period and system, the second of six periods of the Paleozoic Era. The Ordovician spans 41.6 million years from the end of the Cambrian Period 485.4 Ma to the start of the Silurian Period 443.8 Ma.

<span class="mw-page-title-main">Echinoderm</span> Exclusively marine phylum of animals with generally 5-point radial symmetry

An echinoderm is any deuterostomal animal of the phylum Echinodermata, which includes starfish, brittle stars, sea urchins, sand dollars and sea cucumbers, as well as the sessile sea lilies or "stone lilies". While bilaterally symmetrical as larvae, as adults echinoderms are recognisable by their usually five-pointed radial symmetry, and are found on the sea bed at every ocean depth from the intertidal zone to the abyssal zone. The phylum contains about 7,000 living species, making it the second-largest group of deuterostomes after the chordates, as well as the largest marine-only phylum. The first definitive echinoderms appeared near the start of the Cambrian.

<span class="mw-page-title-main">Trilobite</span> Class of extinct, Paleozoic arthropods

Trilobites are extinct marine arthropods that form the class Trilobita. Trilobites form one of the earliest known groups of arthropods. The first appearance of trilobites in the fossil record defines the base of the Atdabanian stage of the Early Cambrian period and they flourished throughout the lower Paleozoic before slipping into a long decline, when, during the Devonian, all trilobite orders except the Proetida died out. The last trilobites disappeared in the mass extinction at the end of the Permian about 251.9 million years ago. Trilobites were among the most successful of all early animals, existing in oceans for almost 270 million years, with over 22,000 species having been described.

<span class="mw-page-title-main">Crinoid</span> Class of echinoderms

Crinoids are marine invertebrates that make up the class Crinoidea. Crinoids that are attached to the sea bottom by a stalk in their juvenile form are commonly called sea lilies, while the unstalked forms, called feather stars or comatulids, are members of the largest crinoid order, Comatulida. Crinoids are echinoderms in the phylum Echinodermata, which also includes the starfish, brittle stars, sea urchins and sea cucumbers. They live in both shallow water and in depths as great as 9,000 meters (30,000 ft).

<span class="mw-page-title-main">Sea urchin</span> Class of marine invertebrates

Sea urchins are spiny, globular echinoderms in the class Echinoidea. About 950 species of sea urchin are distributed on the seabeds of every ocean and inhabit every depth zone from the intertidal seashore down to 5,000 meters. The spherical, hard shells (tests) of sea urchins are round and covered in spines. Most urchin spines range in length from 3 to 10 cm, with outliers such as the black sea urchin possessing spines as long as 30 cm (12 in). Sea urchins move slowly, crawling with tube feet, and also propel themselves with their spines. Although algae are the primary diet, sea urchins also eat slow-moving (sessile) animals. Predators that eat sea urchins include a wide variety of fish, starfish, crabs, marine mammals, and humans.

<span class="mw-page-title-main">Sea cucumber</span> Class of echinoderms

Sea cucumbers are echinoderms from the class Holothuroidea. They are marine animals with a leathery skin and an elongated body containing a single, branched gonad. They are found on the sea floor worldwide. The number of known holothurian species worldwide is about 1,786, with the greatest number being in the Asia-Pacific region. Many of these are gathered for human consumption and some species are cultivated in aquaculture systems. The harvested product is variously referred to as trepang, namako, bêche-de-mer, or balate. Sea cucumbers serve a useful role in the marine ecosystem as they help recycle nutrients, breaking down detritus and other organic matter, after which bacteria can continue the decomposition process.

<span class="mw-page-title-main">Brittle star</span> Echinoderms, closely related to starfish

Brittle stars, serpent stars, or ophiuroids are echinoderms in the class Ophiuroidea, closely related to starfish. They crawl across the sea floor using their flexible arms for locomotion. The ophiuroids generally have five long, slender, whip-like arms which may reach up to 60 cm (24 in) in length on the largest specimens.

<span class="mw-page-title-main">Blastoid</span> Extinct class of marine invertebrates

Blastoids are an extinct type of stemmed echinoderm, often referred to as sea buds. They first appear, along with many other echinoderm classes, in the Ordovician period, and reached their greatest diversity in the Mississippian subperiod of the Carboniferous period. However, blastoids may have originated in the Cambrian. Blastoids persisted until their extinction at the end of Permian, about 250 million years ago. Although never as diverse as their contemporary relatives, the crinoids, blastoids are common fossils, especially in many Mississippian-age rocks.

<span class="mw-page-title-main">Stylophora</span> Extinct group of marine invertebrates

The stylophorans are an extinct, possibly polyphyletic group allied to the Paleozoic Era echinoderms, comprising the prehistoric cornutes and mitrates. It is synonymous with the subphylum Calcichordata. Their unusual appearances have led to a variety of very different reconstructions of their anatomy, how they lived, and their relationships to other organisms.

<i>Pentacrinites</i> Extinct genus of crinoids

Pentacrinites is an extinct genus of crinoids that lived from the Hettangian to the Bathonian of Asia, Europe, North America, and New Zealand. Their stems are pentagonal to star-shaped in cross-section and are the most commonly preserved parts. Pentacrinites are commonly found in the Pentacrinites Bed of the Early Jurassic of Lyme Regis, Dorset, England. Pentacrinites can be recognized by the extensions all around the stem, which are long, unbranching, and of increasing length further down, the very small cup and 5 long freely branching arms.

<span class="mw-page-title-main">Brachiopod</span> Phylum of marine animals also known as lamp shells

Brachiopods, phylum Brachiopoda, are a phylum of trochozoan animals that have hard "valves" (shells) on the upper and lower surfaces, unlike the left and right arrangement in bivalve molluscs. Brachiopod valves are hinged at the rear end, while the front can be opened for feeding or closed for protection. Two major categories are traditionally recognized, articulate and inarticulate brachiopods. The word "articulate" is used to describe the tooth-and-groove structures of the valve-hinge which is present in the articulate group, and absent from the inarticulate group. This is the leading diagnostic skeletal feature, by which the two main groups can be readily distinguished as fossils. Articulate brachiopods have toothed hinges and simple, vertically oriented opening and closing muscles. Conversely, inarticulate brachiopods have weak, untoothed hinges and a more complex system of vertical and oblique (diagonal) muscles used to keep the two valves aligned. In many brachiopods, a stalk-like pedicle projects from an opening near the hinge of one of the valves, known as the pedicle or ventral valve. The pedicle, when present, keeps the animal anchored to the seabed but clear of sediment which would obstruct the opening.

Pelmatozoa was once a clade of Phylum Echinodermata. It included stalked and sedentary echinoderms. The main class of Pelmatozoa were the Crinoidea which includes sea lily and feather star.

<span class="mw-page-title-main">Rhynchonelliformea</span> Subphylum of brachiopods

Rhynchonelliformea is a major subphylum and clade of brachiopods. It is roughly equivalent to the former class Articulata, which was used previously in brachiopod taxonomy up until the 1990s. These so-called articulated brachiopods have many anatomical differences relative to "inarticulate" brachiopods of the subphyla Linguliformea and Craniformea. Articulates have hard calcium carbonate shells with tongue-and-groove hinge articulations and separate sets of simple opening and closing muscles.

<span class="mw-page-title-main">Paleontology in Oklahoma</span>

Paleontology in Oklahoma refers to paleontological research occurring within or conducted by people from the U.S. state of Oklahoma. Oklahoma has a rich fossil record spanning all three eras of the Phanerozoic Eon. Oklahoma is the best source of Pennsylvanian fossils in the United States due to having an exceptionally complete geologic record of the epoch. From the Cambrian to the Devonian, all of Oklahoma was covered by a sea that would come to be home to creatures like brachiopods, bryozoans, graptolites and trilobites. During the Carboniferous, an expanse of coastal deltaic swamps formed in areas of the state where early tetrapods would leave behind footprints that would later fossilize. The sea withdrew altogether during the Permian period. Oklahoma was home a variety of insects as well as early amphibians and reptiles. Oklahoma stayed dry for most of the Mesozoic. During the Late Triassic, carnivorous dinosaurs left behind footprints that would later fossilize. During the Cretaceous, however, the state was mostly covered by the Western Interior Seaway, which was home to huge ammonites and other marine invertebrates. During the Cenozoic, Oklahoma became home to creatures like bison, camels, creodonts, and horses. During the Ice Age, the state was home to mammoths and mastodons. Local Native Americans are known to have used fossils for medicinal purposes. The Jurassic dinosaur Saurophaganax maximus is the Oklahoma state fossil.

<span class="mw-page-title-main">Milwaukee Formation</span>

The Milwaukee Formation is a fossil-bearing geological formation of Middle Devonian age in Milwaukee County, Wisconsin. It stands out for the exceptional diversity of its fossil biota. Included are many kinds of marine protists, invertebrates, and fishes, as well as early trees and giant fungi.

The Verulam Formation is a geologic formation and Lagerstätte in Ontario, Canada. It preserves fossils dating back to the Katian stage of the Ordovician period, or Shermanian to Chatfieldian in the regional stratigraphy.

<span class="mw-page-title-main">Cincta</span> Extinct class of marine invertebrates

Cincta is an extinct class of echinoderms that lived only in the Middle Cambrian epoch. Homostelea is a junior synonym. The classification of cinctans is controversial, but they are probably part of the echinoderm stem group.

<span class="mw-page-title-main">2017 in paleontology</span> Overview of the events of 2017 in paleontology

Paleontology or palaeontology is the study of prehistoric life forms on Earth through the examination of plant and animal fossils. This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2017.

Paleontology or palaeontology is the study of prehistoric life forms on Earth through the examination of plant and animal fossils. This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2018.

<i>Yanjiahella</i> Extinct genus of marine invertebrates

Yanjiahella biscarpa is an extinct species of Ediacaran and Early Cambrian deuterostome which may represent the earliest stem group echinoderm.

References

  1. Streptaster vorticellatus
  2. Scientists discover evolutionary link to modern-day echinoderms
  3. Zamora S.; Lefebvre B.; Álvaro J. J.; et al. (2013). "Chapter 13. Cambrian echinoderm diversity and palaeobiogeography". Geological Society, London, Memoirs. 38: 157–171. doi:10.1144/M38.13.
  4. Sumrall C. D. (2009). "First Definite Record of Permian Edrioasteroids: Neoisorophusella maslennikovi n. sp. from the Kungurian of Northeast Russia". Journal of Paleontology. 83 (6): 990–993. doi:10.1666/09-063.1.
  5. Sumrall 1996

All accessed on March 8, 2008.

Taxonomy