The externalities of automobiles, similar to other economic externalities, represent the measurable costs imposed on those who do not own the vehicle, in contrast to the costs borne by the vehicle owner. These externalities include factors such as air pollution, noise, traffic congestion, and road maintenance costs, which affect the broader community and environment. Additionally, these externalities contribute to social injustice, as disadvantaged communities often bear a disproportionate share of these negative impacts. [1] According to Harvard University, [2] the main externalities of driving are local and global pollution, oil dependence, traffic congestion and traffic collisions; while according to a meta-study conducted by the Delft University [3] these externalities are congestion and scarcity costs, accident costs, air pollution costs, noise costs, climate change costs, costs for nature and landscape, costs for water pollution, costs for soil pollution and costs of energy dependency. [4]
The negative externalities can be substantial, [5] [6] since the driver does not take into account, for example, the negative effects of air pollution on third parties, when they opt to drive their car. Legislators and regulators can internalize those external costs, either by taxes on fuels for example, either by any kind of limitation to car usage, such as parking meters or urban tolls. Nevertheless, it seems the drivers in some countries, already pay some external costs with taxes. Road taxes in the Netherlands for instance, have a relatively high yearly value, which covers the maintenance of the infrastructures. Nevertheless, in the majority of western nations, the external costs of driving, are not covered totally either by taxes, or by any kind of car usage limitation. [3]
Increased reliance on the automobile leads to increased road congestion The externalities of automobiles, similar to other economic externalities, represent the measurable costs imposed on those who do not own the vehicle, in contrast to the costs borne by the vehicle owner. These externalities include factors such as air pollution, noise, traffic congestion, and road maintenance costs, which affect the broader community and environment. Additionally, these externalities contribute to social injustice, as disadvantaged communities often bear a disproportionate share of these negative impacts. . While expansions in road capacity are often touted as relieving congestion, induced demand often means that any reductions in congestion are temporary.
Cars are the leading cause of fatal collisions in many countries, and are the leading cause of death of youth and children. In 2010, car crashes in the United States resulted in 32,999 deaths and a projected $871 billion cost to society, around 6% of the United States 2010 GDP. [7] Road traffic collisions cause social costs including material damages, administrative costs, medical costs, production losses and immaterial costs. Immaterial costs are lifetime shortening, suffering as well as for example pain or sorrow, which can arise from death injuries. Material costs are often covered by insurance and also market price of these costs are available. This does not, however, hold for any immaterial costs and proxy cost factors because these costs are not sufficiently covered by private insurance systems. [8]
Cars produce numerous harmful air pollutants in their exhaust such as NOx, particulate matter and ground-level ozone (indirectly). [9] Additionally, as car tires wear down, they shed the materials they're made of into the air as particulate pollution. [10] Those pollutants are known to cause various respiratory and other health issues and cars are among the leading cause of smog in modern developed world cities. External costs which can arise from using cars and trucks in everyday life are of different kinds (covering also material costs such as damages to buildings and materials), but health costs are the most common. In this case cars might cause cardiovascular and respiratory diseases. [11] Such costs have to be paid by the society as a whole. [8]
There is quite a high number of available studies on the methodology of air pollution costs as well as applications of these methods. [12] [13]
Cars significantly contribute to noise pollution. While on common perception the engine is the main cause for noise, tire noise becomes the dominant source of noise above 20–30 miles per hour (30–50 km/h) for passenger vehicles. Although aerodynamic noise does increase at highway speeds, it contributes less than tire noise unless at very high speeds. [14]
Persistent traffic noise above 40 dB(A) is known to disrupt sleep, and above 55 dB(A) is known to increase the risk of cardiovascular disease. In Germany, 2.9% of myocardial infarction cases can be attributed to road traffic noise, with the 1.5% of the population exposed to greater than 75 dB(A) accounting for 27.13% of that. In total, an estimated 800,023 Disability-adjusted life years are lost due in urban populations due to road traffic noise in the EU. [15] In the United States, 13.2% of the population is potentially exposed to road noise above 45 dB(A), with 5.5% exposed to road noise above 55 dB(A). [16]
Climate change is significantly caused by human activity, particularly the production of greenhouse gasses and their release into the atmosphere. About 16% of manmade carbon dioxide is from road transport, [17] mostly passenger vehicles. [18] Gasoline cars with less than two passengers produce more carbon dioxide per passenger kilometer than any other form of land transport. [19] Many people understand that what contributes to greenhouse gas emissions is style of driving and length of a trip. Less known fact when considering measurement of emissions is how it changes with changing speed of vehicle. Traffic congestion is dangerous because of its effects on society. Besides increasing risk of injuries arising primarily from high-grade roads together with the high noise, the main consequence of traffic congestion is increasing level of emissions of greenhouse gases. [20] In addition to that nitrogen oxides from cars have a minor indirect greenhouse effect. [21]
Roads, parking spaces but also suburban sprawl caused by cars need significant amount of space. Typically, once agricultural or uncultivated land is turned over into ever wider motorways and ever larger parking lots to accommodate the automobile but induced demand means any relief is temporary and more and more surfaces are sealed in the process.
Lubricants and fuels used by automobiles are harmful when they leak into the groundwater. Oil refineries and particularly the mining of unconventional oil like oil shales and oil sands can be extremely harmful for the surrounding water resources and bodies of water.
In addition to that runoff of impervious surfaces like roads or parking lots can be contaminated with all sorts of pollutants.
In addition to the fertile topsoil often "buried" under freeways and parking spaces, cars directly or indirectly release pollutants into the soil. Oil may leak into the groundwater and the common practice to clean cars in the front yard causes surfactants and other products in the cleaning products to pollute the ground. Similarly, salt is often used to keep roads and highways free of snow and ice and chlorides cause major damage to vegetation as well as being an aggressive substance linked to rust and corrosion.
While trains and tramway often run on electricity which can be generated through renewable sources or locally available fuel, cars by and large run on petroleum derived fuels. Only a handful of countries are net exporters of petroleum. For developed countries this causes a political dependence on a reliable petroleum supply and has been cited as the reason for foreign policy decisions of the United States among others. For developing countries, petroleum products can be among the chief imports and reliance on automobiles can significantly impact the trade deficit and public debt of such nations.
Some research indicates a correlation between urban sprawl and obesity. Car centric development and lack of walkability lead to less use of active modes of transportation such as utility cycling and walking which is linked to various health issues caused by a lack of exercise.[ citation needed ]
Pigovian taxes are one solution used for correcting negative externalities caused by automobiles. By increasing the cost of using automobiles, it is possible to reduce consumption to an economically optimal level[ citation needed ] while raising tax revenue. This could be achieved through the use of fuel taxes and road taxes, which might be used for infrastructure investment and repair. [22] However meeting all negative externalities by fuel tax is politically difficult. [23] In the case of carbon taxes, revenue could be used for investment in environmentally friendly initiatives. [24] Fuel and carbon taxes have been criticized as being a regressive tax, that affect low income individuals greater than high earners. As a result, the Canadian government has used a portion of tax revenue from carbon taxes to rebate lower income households. [25]
Major cities such as London and Stockholm have introduced congestion pricing in order to reduce traffic and pollution in their city centres. This is implemented as a toll on automobiles entering the city centre during peak hours. [26] This toll aims to correct the negative externalities and change consumer behaviour, by making consumers more aware of the costs induced by their consumption. Congestion pricing is an efficient way at reducing traffic externalities, as monitoring technology allows prices to adapt to changes in traffic levels. This added toll reduces congestion, encourages the use of public transit, and raises revenue from tolls. [27]
Many governments have begun subsidizing electric vehicles. With the intention of correcting the positive externality that electric vehicles contribute to the environment. This has been implemented through the use of tax credits, purchase rebates, and tax exemptions. [28] These subsidies reduce the cost of Zero-emissions vehicle and as a result increase demand. By incentivizing consumers to reduce their purchases of petrol vehicles in favour of electric cars, there is a decrease in negative externalities associated with emissions. There has been backlash against the equity of these subsidies, stating that these subsidies favour the wealthy. [29] It has been suggested that subsidizing ebikes and car charging stations would be fairer. [30] [31]
The use of emission standards on automobiles, reduces the amount of pollutants emitted by new automobiles thus reducing negative environmental externalities. This is an important piece in regulating automobile externalities, as emission levels per litre of gasoline consumed are not reduced by fuel taxes. [32] The European Union has set a target of 95g of CO2 per kilometre by 2021. Emission limits are based on mass of automobiles with heavier vehicles having higher limits. Manufacturers who miss this target are charged with increasing costs for each gram of additional pollution. [33] This policy serves to regulate pollution while accounting for unmeasured costs placed by automobiles on the environment.
While the existence of negative externalities seems consensual, the existence of positive externalities of the automobile does not have consensus amongst economists and experts in the transportation sector. The creation of jobs or the fact that the related industries pay taxes, cannot be considered, as such, as positive externalities, because any legal economic activity pays taxes, and the big majority also needs job demand. Time saving to the driver, and therefore, eventually more personal production, cannot either be considered a positive externality, because the driver has already taken those factors into account when they opted to use their car, and therefore these factors cannot be considered, by many authors, a pure externality.[ citation needed ]
Notwithstanding the above objections, some authors enumerate positive externalities for the automobile like accessibility and land value. Where land is expensive, it is developed more intensively. Where it is more intensively developed, there are more activities and destinations that can be reached in a given time. Where there are more activities, accessibility is higher and where accessibility is higher, land is more expensive. [34]
However, observations show that less car-dependent forms of development produce denser settlement patterns and higher land values. [ citation needed ]
Economists have sought to understand why cities grow and why large cities seem to be at an advantage relative to others. One explanation that has received much attention emphasizes the role of agglomeration economies in facilitating and sustaining city growth. The clustering of firms and workers in cities generates positive externalities by allowing for labor market pooling, input sharing, and knowledge spillovers. [34]
Nevertheless, some other economists mention urban decay and urban sprawl as a negative effect or cost of the automobile, when the city grows due to automobile dependency. [35]
Most large cities currently require most of their food to be trucked in by motor vehicle. Historic Paris is a counterexample, using up to 1/6 of its landspace for growing food. [36]
Furthermore, most large cities extensively rely on urban rail of some form and it is often argued that their functioning would be severely diminished without the existence of said urban rail system.
Transport economics is a branch of economics founded in 1959 by American economist John R. Meyer that deals with the allocation of resources within the transport sector. It has strong links to civil engineering. Transport economics differs from some other branches of economics in that the assumption of a spaceless, instantaneous economy does not hold. People and goods flow over networks at certain speeds. Demands peak. Advance ticket purchase is often induced by lower fares. The networks themselves may or may not be competitive. A single trip may require the bundling of services provided by several firms, agencies and modes.
In economics, an externality or external cost is an indirect cost or benefit to an uninvolved third party that arises as an effect of another party's activity. Externalities can be considered as unpriced components that are involved in either consumer or producer market transactions. Air pollution from motor vehicles is one example. The cost of air pollution to society is not paid by either the producers or users of motorized transport to the rest of society. Water pollution from mills and factories is another example. All (water) consumers are made worse off by pollution but are not compensated by the market for this damage. A positive externality is when an individual's consumption in a market increases the well-being of others, but the individual does not charge the third party for the benefit. The third party is essentially getting a free product. An example of this might be the apartment above a bakery receiving some free heat in winter. The people who live in the apartment do not compensate the bakery for this benefit.
An environmental tax, ecotax, or green tax is a tax levied on activities which are considered to be harmful to the environment and is intended to promote environmentally friendly activities via economic incentives. One notable example is a carbon tax. Such a policy can complement or avert the need for regulatory approaches. Often, an ecotax policy proposal may attempt to maintain overall tax revenue by proportionately reducing other taxes ; such proposals are known as a green tax shift towards ecological taxation. Ecotaxes address the failure of free markets to consider environmental impacts.
Road pricing are direct charges levied for the use of roads, including road tolls, distance or time-based fees, congestion charges and charges designed to discourage the use of certain classes of vehicle, fuel sources or more polluting vehicles. These charges may be used primarily for revenue generation, usually for road infrastructure financing, or as a transportation demand management tool to reduce peak hour travel and the associated traffic congestion or other social and environmental negative externalities associated with road travel such as air pollution, greenhouse gas emissions, visual intrusion, noise pollution and road traffic collisions.
Congestion pricing or congestion charges is a system of surcharging users of public goods that are subject to congestion through excess demand, such as through higher peak charges for use of bus services, electricity, metros, railways, telephones, and road pricing to reduce traffic congestion; airlines and shipping companies may be charged higher fees for slots at airports and through canals at busy times. Advocates claim this pricing strategy regulates demand, making it possible to manage congestion without increasing supply.
Since the start of the twentieth century, the role of cars has become highly important, though controversial. They are used throughout the world and have become the most popular mode of transport in many of the more developed countries. In developing countries cars are fewer and the effects of the car on society are less visible, however they are nonetheless significant. The spread of cars built upon earlier changes in transport brought by railways and bicycles. They introduced sweeping changes in employment patterns, social interactions, infrastructure and the distribution of goods.
A Pigouvian tax is a tax on any market activity that generates negative externalities. A Pigouvian tax is a method that tries to internalize negative externalities to achieve the Nash equilibrium and optimal Pareto efficiency. The tax is normally set by the government to correct an undesirable or inefficient market outcome and does so by being set equal to the external marginal cost of the negative externalities. In the presence of negative externalities, social cost includes private cost and external cost caused by negative externalities. This means the social cost of a market activity is not covered by the private cost of the activity. In such a case, the market outcome is not efficient and may lead to over-consumption of the product. Often-cited examples of negative externalities are environmental pollution and increased public healthcare costs associated with tobacco and sugary drink consumption.
Vehicle emissions control is the study of reducing the emissions produced by motor vehicles, especially internal combustion engines. The primary emissions studied include hydrocarbons, volatile organic compounds, carbon monoxide, carbon dioxide, nitrogen oxides, particulate matter, and sulfur oxides. Starting in the 1950s and 1960s, various regulatory agencies were formed with a primary focus on studying the vehicle emissions and their effects on human health and the environment. As the worlds understanding of vehicle emissions improved, so did the devices used to mitigate their impacts. The regulatory requirements of the Clean Air Act, which was amended many times, greatly restricted acceptable vehicle emissions. With the restrictions, vehicles started being designed more efficiently by utilizing various emission control systems and devices which became more common in vehicles over time.
Exhaust gas or flue gas is emitted as a result of the combustion of fuels such as natural gas, gasoline (petrol), diesel fuel, fuel oil, biodiesel blends, or coal. According to the type of engine, it is discharged into the atmosphere through an exhaust pipe, flue gas stack, or propelling nozzle. It often disperses downwind in a pattern called an exhaust plume.
Sustainable transport refers to ways of transportation that are sustainable in terms of their social and environmental impacts. Components for evaluating sustainability include the particular vehicles used for road, water or air transport; the source of energy; and the infrastructure used to accommodate the transport. Transport operations and logistics as well as transit-oriented development are also involved in evaluation. Transportation sustainability is largely being measured by transportation system effectiveness and efficiency as well as the environmental and climate impacts of the system. Transport systems have significant impacts on the environment, accounting for between 20% and 25% of world energy consumption and carbon dioxide emissions. The majority of the emissions, almost 97%, came from direct burning of fossil fuels. In 2019, about 95% of the fuel came from fossil sources. The main source of greenhouse gas emissions in the European Union is transportation. In 2019 it contributes to about 31% of global emissions and 24% of emissions in the EU. In addition, up to the COVID-19 pandemic, emissions have only increased in this one sector. Greenhouse gas emissions from transport are increasing at a faster rate than any other energy using sector. Road transport is also a major contributor to local air pollution and smog.
A green vehicle, clean vehicle, eco-friendly vehicle or environmentally friendly vehicle is a road motor vehicle that produces less harmful impacts to the environment than comparable conventional internal combustion engine vehicles running on gasoline or diesel, or one that uses certain alternative fuels. Presently, in some countries the term is used for any vehicle complying or surpassing the more stringent European emission standards, or California's zero-emissions vehicle standards, or the low-carbon fuel standards enacted in several countries.
Transportation demand management or travel demand management (TDM) is the application of strategies and policies to increase the efficiency of transportation systems, that reduce travel demand, or to redistribute this demand in space or in time.
Motoring taxation in the United Kingdom consists primarily of vehicle excise duty, which is levied on vehicles registered in the UK, and hydrocarbon oil duty, which is levied on the fuel used by motor vehicles. VED and fuel tax raised approximately £32 billion in 2009, a further £4 billion was raised from the value added tax on fuel purchases. Motoring-related taxes for fiscal year 2011/12, including fuel duties and VED, are estimated to amount to more than £38 billion, representing almost 7% of total UK taxation.
Compared to other popular modes of passenger transportation, the car has a relatively high cost per person-distance traveled. The income elasticity for cars ranges from very elastic in poor countries, to inelastic in rich nations. The advantages of car usage include on-demand and door-to-door travel, and are not easily substituted by cheaper alternative modes of transport, with the present level and type of auto specific infrastructure in the countries with high auto usage.
Car dependency is a phenomenon in urban planning wherein existing and planned infrastructure prioritizes the use of automobiles over other modes of transportation, such as public transit, bicycles, and walking.
A car, or an automobile, is a motor vehicle with wheels. Most definitions of cars state that they run primarily on roads, seat one to eight people, have four wheels, and mainly transport people over cargo. There are around one billion cars in use worldwide. The car is considered an essential part of the developed economy.
The environmental impact of transport are significant because transport is a major user of energy, and burns most of the world's petroleum. This creates air pollution, including nitrous oxides and particulates, and is a significant contributor to global warming through emission of carbon dioxide. and also plant pollution, by heavy metals. Within the transport sector, road transport is the largest contributor to global warming.
Mobile source air pollution includes any air pollution emitted by motor vehicles, airplanes, locomotives, and other engines and equipment that can be moved from one location to another. Many of these pollutants contribute to environmental degradation and have negative effects on human health. To prevent unnecessary damage to human health and the environment, environmental regulatory agencies such as the U.S. Environmental Protection Agency have established policies to minimize air pollution from mobile sources. Similar agencies exist at the state level. Due to the large number of mobile sources of air pollution, and their ability to move from one location to another, mobile sources are regulated differently from stationary sources, such as power plants. Instead of monitoring individual emitters, such as an individual vehicle, mobile sources are often regulated more broadly through design and fuel standards. Examples of this include corporate average fuel economy standards and laws that ban leaded gasoline in the United States. The increase in the number of motor vehicles driven in the U.S. has made efforts to limit mobile source pollution challenging. As a result, there have been a number of different regulatory instruments implemented to reach the desired emissions goals.
Air pollution in India is a serious environmental issue. Of the 30 most polluted cities in the world, 21 were in India in 2019. As per a study based on 2016 data, at least 140 million people in India breathe air that is 10 times or more over the WHO safe limit and 13 of the world's 20 cities with the highest annual levels of air pollution are in India. 51% of the pollution is caused by industrial pollution, 27% by vehicles, 17% by crop burning and 5% by other sources. Air pollution contributes to the premature deaths of 2 million Indians every year. Emissions come from vehicles and industry, whereas in rural areas, much of the pollution stems from biomass burning for cooking and keeping warm. In autumn and spring months, large scale crop residue burning in agriculture fields – a cheaper alternative to mechanical tilling – is a major source of smoke, smog and particulate pollution. India has a low per capita emissions of greenhouse gases but the country as a whole is the third largest greenhouse gas producer after China and the United States. A 2013 study on non-smokers has found that Indians have 30% weaker lung function than Europeans.
Road ecology is the study of the ecological effects of roads and highways. These effects may include local effects, such as on noise, water pollution, habitat destruction/disturbance and local air quality; and the wider environmental effects of transport such as habitat fragmentation, ecosystem degradation, and climate change from vehicle emissions.
{{cite journal}}
: Cite journal requires |journal=
(help)