Epithelioid hemangioendothelioma

Last updated
Epithelioid Hemangioendothelioma
Epithelioid hemangioendothelioma.jpg
Micrograph of an epithelioid hemangioendothelioma of the liver.
Specialty Oncology

Epithelioid hemangioendothelioma (EHE) is a rare tumor, first characterized by Sharon Weiss and Franz Enzinger in 1982 [1] that both clinically and histologically is intermediate between angiosarcoma and hemangioma. However, a distinct, disease-defining genetic alteration recently described for EHE indicates that it is an entirely separate entity from both angiosarcoma and hemangioma.

Contents

EHE is a soft tissue sarcoma and is generally considered a vascular cancer insofar as the ‘lesional’ cells have surface markers typical of endothelial cells (cells lining the interior of blood vessels). EHE was originally described as occurring most commonly in the veins of the extremities (arms and legs) and two organs, the liver [2] and lungs. It has since been described in organs throughout the body. In addition to liver and lungs, bones and skin have been the most frequent organs.

Before the initial description of Weiss, the tumor had been reported under a variety of other names, including histiocytoid hemangioendothelioma, intravascular bronchoalveolar tumor (in the lung), and sclerosing cholangiocarcinoma. In the lung and liver, common sites of metastatic tumor, it was most likely to be confused with carcinoma a far more common type of tumor.

EHE typically occurs in the 20 – 40 age range although the overall age range involved is much broader and a modest predilection for females over males. It often has an indolent course, and many affected people have survived for decades with multi-organ disease.[1]:601 The extent and number of organs involved apparently has little effect on longevity.

Genetics

The cytogenetics of EHE gave some of the first clues of an underlying genetic alteration. A balanced, reciprocal translocation t(1;3)(p36.3;q25) in EHE tumor cells was first described by Mendlick et al. in 2001. [3] This led to the landmark paper by Tanas et al. in 2011 [4] describing the specific genes involved in the translocation associated with the most common forms of EHE. This alteration results in the fusion of genes coding for two transcription co-activators (transcriptional regulators): TAZ (transcriptional co-activator with PDZ-binding motif) also known as WWTR1 (WW domain-containing transcription regulator protein 1) and CAMTA1 (calmodulin-binding transcription activator 1). The names in parentheses are not relevant to casual (or even science) readers but are included to help distinguish them from other genes. For instance, another gene with an entirely different function, Tafazzin, is unrelated to EHE but confusingly, also referred to as TAZ. In any case, the EHE translocation results in an abnormal ‘fusion gene’ that expresses an abnormal mRNA resulting in synthesis of a fusion protein variant of TAZ that is always turned on. This form of TAZ always resides in the nucleus and therefore is constitutively active. It binds and turns on a very important member of the TEAD family of transcription factors and this causes cells to proliferate. It is this production of the TAZ-TEAD transcriptome that causes the affected endothelial cells to grow into tumors. In normal cells, TAZ is considered a major negative transducer of the Hippo pathway, a signaling system that regulates organ size by causing cells to stop growing when they touch each other (contact inhibition). Many upstream inputs regulate the Hippo signal which normally functions to turn off or de-activate TAZ by keeping it in the cytoplasm and out of the nucleus. In EHE cells, the abnormal fusion TAZ is ‘immune’ to this input and just stays in the nucleus, and continuing to stimulate cell growth.

Note that about 10% of EHE patients harbor a different translocation. This one similarly results in the constitutive activation of YAP, an orthologue of TAZ (i.e., a gene that has sequence and function that are very similar to TAZ). This also results in persistent, unregulated growth of the affected cells and therefore causes EHE-type tumors.

Treatment

Prognosis

Although Epithelioid Hemangioendothelioma typically presents as a low-grade tumor, occasionally, eHAE presents as high grade and more aggressive. eHAE presenting in the pleura, for example, is associated with a much more aggressive and hard to treat course. [6] There is no standard chemotherapy treatment for eHAE at current but success with drugs such as Interferon, Paclitaxel, MAID combination chemotherapy, Thalidomide and Doxorubicin have been reported.

Epidemiology

It is so rare that only 0.01 percent of the cancer population has it and it affects about 1 person in every 1,000,000 worldwide. [7] Around 90 cases are diagnosed in the United States every year. [8] It is unresponsive to any known strain of chemotherapy, making treatment very difficult.

Society

There is a Facebook site set up for people with EHE. [9] There is also a Registry for patients to enter their medical history. [10] CRAVAT Center for Research and Analysis of VAscular Tumors is a website for the EHE community. [11] The EHE Rare Cancer Foundation Australia was established in 2015 by Australians with Epithelioid Hemangioendothelioma (EHE). [12] The core objective of the EHE Rare Cancer Foundation Australia is to proactively fundraise in order to support research into this rare cancer in the hope that a maintenance program or cure can be found. [13]

In 2003 photographer and actress Kris Carr was diagnosed with a stable and low grade version of eHAE. Carr has become a success as a 'Wellness Warrior' advocating a vegan lifestyle as a way to avoid and stabilize disease. [14]


See also

Related Research Articles

<span class="mw-page-title-main">Sarcoma</span> Medical condition

A sarcoma is a malignant tumor, a type of cancer that arises from cells of mesenchymal origin. Connective tissue is a broad term that includes bone, cartilage, fat, vascular, or other structural tissues, and sarcomas can arise in any of these types of tissues. As a result, there are many subtypes of sarcoma, which are classified based on the specific tissue and type of cell from which the tumor originates. Sarcomas are primary connective tissue tumors, meaning that they arise in connective tissues. This is in contrast to secondary connective tissue tumors, which occur when a cancer from elsewhere in the body spreads to the connective tissue. Sarcomas are one of five different types of cancer, classified by the cell type from which they originate. The word sarcoma is derived from the Greek σάρκωμα sarkōma 'fleshy excrescence or substance', itself from σάρξsarx meaning 'flesh'.

<span class="mw-page-title-main">Adenoid cystic carcinoma</span> Medical condition

Adenoid cystic carcinoma is a rare type of cancer that can exist in many different body sites. This tumor most often occurs in the salivary glands, but it can also be found in many anatomic sites, including the breast, lacrimal gland, lung, brain, Bartholin gland, trachea, and the paranasal sinuses.

<span class="mw-page-title-main">Synovial sarcoma</span> Medical condition

A synovial sarcoma is a rare form of cancer which occurs primarily in the extremities of the arms or legs, often in proximity to joint capsules and tendon sheaths. It is a type of soft-tissue sarcoma.

<span class="mw-page-title-main">Desmoplastic small-round-cell tumor</span> Aggressive and rare cancer

Desmoplastic small-round-cell tumor (DSRCT) is an aggressive and rare cancer that primarily occurs as masses in the abdomen. Other areas affected may include the lymph nodes, the lining of the abdomen, diaphragm, spleen, liver, chest wall, skull, spinal cord, large intestine, small intestine, bladder, brain, lungs, testicles, ovaries, and the pelvis. Reported sites of metastatic spread include the liver, lungs, lymph nodes, brain, skull, and bones. It is characterized by the EWS-WT1 fusion protein.

<span class="mw-page-title-main">Hemangioendothelioma</span> Medical condition

Hemangioendotheliomas are a family of vascular neoplasms of intermediate malignancy.

<span class="mw-page-title-main">Kasabach–Merritt syndrome</span> Medical condition

Kasabach–Merritt syndrome, also known as hemangioma with thrombocytopenia, is a rare disease, usually of infants, in which a vascular tumor leads to decreased platelet counts and sometimes other bleeding problems, which can be life-threatening. It is also known as hemangioma thrombocytopenia syndrome. It is named after Haig Haigouni Kasabach and Katharine Krom Merritt, the two pediatricians who first described the condition in 1940.

<span class="mw-page-title-main">ETV6</span> Protein-coding gene in the species Homo sapiens

ETV6 protein is a transcription factor that in humans is encoded by the ETV6 gene. The ETV6 protein regulates the development and growth of diverse cell types, particularly those of hematological tissues. However, its gene, ETV6 frequently suffers various mutations that lead to an array of potentially lethal cancers, i.e., ETV6 is a clinically significant proto-oncogene in that it can fuse with other genes to drive the development and/or progression of certain cancers. However, ETV6 is also an anti-oncogene or tumor suppressor gene in that mutations in it that encode for a truncated and therefore inactive protein are also associated with certain types of cancers.

Alveolar rhabdomyosarcoma (ARMS) is a subtype of the rhabdomyosarcoma soft tissue cancer family whose lineage is from mesenchymal cells and are related to skeletal muscle cells. ARMS tumors resemble the alveolar tissue in the lungs. Tumor location varies from patient to patient, but is commonly found in the head and neck region, male and female urogenital tracts, the torso, and extremities. Two fusion proteins can be associated with ARMS, but are not necessary, PAX3-FKHR. and PAX7-FKHR. In children and adolescents ARMS accounts for about 1 percent of all malignancies, has an incidence rate of 1 per million, and most cases occur sporadically with no genetic predisposition. PAX3-FOXO1 is now known to drive cancer-promoting gene expression programs through creation of distant genetic elements called super enhancers.

<span class="mw-page-title-main">Mesoblastic nephroma</span> Medical condition

Congenital mesoblastic nephroma, while rare, is the most common kidney neoplasm diagnosed in the first three months of life and accounts for 3-5% of all childhood renal neoplasms. This neoplasm is generally non-aggressive and amenable to surgical removal. However, a readily identifiable subset of these kidney tumors has a more malignant potential and is capable of causing life-threatening metastases. Congenital mesoblastic nephroma was first named as such in 1967 but was recognized decades before this as fetal renal hamartoma or leiomyomatous renal hamartoma.

<span class="mw-page-title-main">TEAD1</span> Protein-coding gene in the species Homo sapiens

Transcriptional enhancer factor TEF-1 also known as TEA domain family member 1 (TEAD1) and transcription factor 13 (TCF-13) is a protein that in humans is encoded by the TEAD1 gene. TEAD1 was the first member of the TEAD family of transcription factors to be identified.

<span class="mw-page-title-main">Epithelioid sarcoma</span> Medical condition

Epithelioid sarcoma is a rare soft tissue sarcoma arising from mesenchymal tissue and characterized by epithelioid-like features. It accounts for less than 1% of all soft tissue sarcomas. It was first definitively characterized by F.M. Enzinger in 1970. It commonly presents itself in the distal limbs of young adults as a small, soft mass or a cluster of bumps. A proximal version has also been described, frequently occurring in the upper extremities. Less commonly, cases are reported in the pelvis, vulva, penis, and spine.

<span class="mw-page-title-main">Clear cell sarcoma</span> Rare form of cancer

Clear cell sarcoma is a rare form of cancer called a sarcoma. It is known to occur mainly in the soft tissues and dermis. Rare forms were thought to occur in the gastrointestinal tract before they were discovered to be different and redesignated as gastrointestinal neuroectodermal tumors.

Extraskeletal myxoid chondrosarcoma (EMC) is a rare low-grade malignant mesenchymal neoplasm of the soft tissues, that differs from other sarcomas by unique histology and characteristic chromosomal translocations. There is an uncertain differentiation and neuroendocrine differentiation is even possible.

Sharon Ann Whelan Weiss is an American pathologist who is best known for her contribution to the subspecialty of soft tissue pathology. She is the main author of Soft Tissue Tumors, one of the most widely used textbooks in the field of sarcoma and soft tissue pathology. She is also well known for her seminal descriptions of multiple soft tissue tumors, such as epithelioid hemangioendothelioma and pleomorphic hyalinizing angiectatic tumor of soft parts among others. She has also mentored and trained other well-known soft tissue pathologists.

<span class="mw-page-title-main">Inflammatory myofibroblastic tumour</span> Medical condition

Inflammatory myofibroblastic tumor (IMT) is a rare neoplasm of the mesodermal cells that form the connective tissues which support virtually all of the organs and tissues of the body. IMT was formerly termed inflammatory pseudotumor. Currently, however, inflammatory pseudotumor designates a large and heterogeneous group of soft tissue tumors that includes inflammatory myofibroblastic tumor, plasma cell granuloma, xanthomatous pseudotumor, solitary mast cell granuloma, inflammatory fibrosarcoma, pseudosarcomatous myofibroblastic proliferation, myofibroblastoma, inflammatory myofibrohistiocytic proliferation, and other tumors that develop from connective tissue cells. Inflammatory pseudotumour is a generic term applied to various neoplastic and non-neoplastic tissue lesions which share a common microscopic appearance consisting of spindle cells and a prominent presence of the white blood cells that populate chronic or, less commonly, acute inflamed tissues.

<span class="mw-page-title-main">Angiomatoid fibrous histiocytoma</span> Type of tumor which affects children and adolescents

Angiomatoid fibrous histiocytoma(AFH) is a rare soft tissue cancer that affects children and young adults. On November 16, 2020, US MasterChef Junior participant Ben Watkins died from the disease at the age of 14.

<span class="mw-page-title-main">Proliferative fasciitis and proliferative myositis</span> Medical condition

Proliferative fasciitis and proliferative myositis (PF/PM) are rare benign soft tissue lesions that increase in size over several weeks and often regress over the ensuing 1–3 months. The lesions in PF/PM are typically obvious tumors or swellings. Historically, many studies had grouped the two descriptive forms of PF/PM as similar disorders with the exception that proliferative fasciitis occurs in subcutaneous tissues while proliferative myositis occurs in muscle tissues. In 2020, the World Health Organization agreed with this view and defined these lesions as virtually identical disorders termed proliferative fasciitis/proliferative myositis or proliferative fasciitis and proliferative myositis. The Organization also classified them as one of the various forms of the fibroblastic and myofibroblastic tumors.

Myxofibrosarcoma (MFS), although a rare type of tumor, is one of the most common soft tissue sarcomas, i.e. cancerous tumors, that develop in the soft tissues of elderly individuals. Initially considered to be a type of histiocytoma termed fibrous histiocytoma or myxoid variant of malignant fibrous histiocytoma, Angervall et al. termed this tumor myxofibrosarcoma in 1977. In 2020, the World Health Organization reclassified MFS as a separate and distinct tumor in the category of malignant fibroblastic and myofibroblastic tumors.

Sclerosing epithelioid fibrosarcoma (SEF) is a very rare malignant tumor of soft tissues that on microscopic examination consists of small round or ovoid neoplastic epithelioid fibroblast-like cells, i.e. cells that have features resembling both epithelioid cells and fibroblasts. In 2020, the World Health Organization classified SEF as a distinct tumor type in the category of malignant fibroblastic and myofibroblastic tumors. However, current studies have reported that low-grade fibromyxoid sarcoma (LGFMS) has many clinically and pathologically important features characteristic of SEF; these studies suggest that LGSFMS may be an early form of, and over time progress to become, a SEF. Since the World Health Organization has classified LGFMS as one of the malignant fibroblastic and myofibroblastic tumors that is distinctly different than SEF, SEF and LGFMS are here regarded as different tumor forms.

The nuclear protein in testis gene encodes a 1,132-amino acid protein termed NUT that is expressed almost exclusively in the testes, ovaries, and ciliary ganglion. NUT protein facilitates the acetylation of chromatin by histone acetyltransferase EP300 in testicular spermatids. This acetylation is a form of chromatin remodeling which compacts spermatid chromatin, a critical step required for the normal conduct of spermatogenesis, i.e. the maturation of spermatids into sperm. Male mice that lacked the mouse Nutm1 gene using a gene knockout method had abnormally small testes, lacked sperm in their cauda epididymis, and were completely sterile. These findings indicate that Nutm1 gene is essential for the development of normal fertility in male mice and suggest that the NUTM1 gene may play a similar role in men.

References

  1. Weiss SW, Enzinger FM (September 1982). "Epithelioid hemangioendothelioma: a vascular tumor often mistaken for a carcinoma". Cancer. 50 (5): 970–81. doi: 10.1002/1097-0142(19820901)50:5<970::aid-cncr2820500527>3.0.co;2-z . PMID   7093931.
  2. Mistry AM, Gorden DL, Busler JF, Coogan AC, Kelly BS (December 2012). "Diagnostic and therapeutic challenges in hepatic epithelioid hemangioendothelioma". J Gastrointest Cancer. 43 (4): 521–5. doi:10.1007/s12029-012-9389-y. PMID   22544493. S2CID   23391808.
  3. Mendlick MR, Nelson M, Pickering D, Johansson SL, Seemayer TA, Neff JR, et al. (May 2001). "Translocation t(1;3)(p36.3;q25) is a nonrandom aberration in epithelioid hemangioendothelioma". Am J Surg Pathol. 25 (5): 684–7. doi:10.1097/00000478-200105000-00019. PMID   11342784. S2CID   26397433.
  4. Tanas MR, Sboner A, Oliveira AM, Erickson-Johnson MR, Hespelt J, Hanwright PJ, et al. (August 2011). "Identification of a disease-defining gene fusion in epithelioid hemangioendothelioma". Sci Transl Med. 3 (98): 98ra82. doi:10.1126/scitranslmed.3002409. PMID   21885404. S2CID   206678129.
  5. "Epithelioid Hemangioendolthelioma (EHE) - Diagnosis & Treatment". Boston Children's Hospital . Retrieved June 17, 2021.
  6. Crotty EJ, McAdams HP, Erasmus JJ, Sporn TA, Roggli VL (December 2000). "Epithelioid hemangioendothelioma of the pleura: clinical and radiologic features". AJR Am J Roentgenol. 175 (6): 1545–9. doi:10.2214/ajr.175.6.1751545. PMID   11090371.
  7. "Epithelioid Hemangioendothelioma in children". Boston Children's Hospital. Archived from the original on August 18, 2017.
  8. Paulson, Kelly G.; Ravi, Vinod; Rubin, Brian P.; Park, Min; Loggers, Elizabeth T.; Cranmer, Lee D.; Wagner, Michael J. (2023). "Incidence, demographics, and survival of malignant hemangioendothelioma in the United States". Cancer Medicine. 12 (14): 15101–15106. doi:10.1002/cam4.6181. PMC   10417180 . PMID   37260142.
  9. "Epithelioid Hemangioendothelioma (EHE) Cancer". Facebook .
  10. "Home".
  11. "Epithelioid Hemangioendothelioma Cancer Foundation".
  12. generator, metatags. "EHE Rare Cancer Foundation Australia". www.ehefoundation.com.au. Retrieved 2016-07-06.
  13. generator, metatags. "EHE Rare Cancer Foundation Australia". www.ehefoundation.com.au. Retrieved 2016-07-06.
  14. Stein L (July 16, 2008). "Living with Cancer: The Kris Carr's Story". Scientific American.