FET protein family

Last updated

The FET protein family (also known as the TET protein family) [1] consists of three similarly structured and functioning proteins. [2] They and the genes in the FET gene family which encode them (i.e. form the pre-messenger RNAs that are converted to the messenger RNAs responsible for their production) are: [2] [3] 1) the EWSR1 protein encoded by the EWSR1 gene (also termed the Ewing sarcoma RNA binding protein, EWS RNA binding protein 1, or bK984G1.4 gene) located at band 12.2 of the long (i.e. "q") arm of chromosome 22; [4] 2) the FUS (i.e. fused in sarcoma) protein encoded by the FUS gene (also termed the FUS RNA binding protein, TLS, asTLS, ALS6, ETM4, FUS1, POMP75, altFUS, or HNRNPP2 gene) located at band 16 on the short arm of chromosome 16; [5] and 3) the TAF15 protein encoded by the TAF15 gene (also termed the TATA-box binding protein associated factor 15, Npl3, RBP56, TAF2N, or TAFII68 gene) located at band 12 on the long arm of chromosome 7 [6] The FET in this protein family's name derives from the first letters of FUS, EWSR1, and TAF15. [7]

Contents

FET proteins are abundantly expressed in virtually all tissues examined. They are RNA-binding proteins. [7] By binding to their RNA targets, they contribute to the regulation of: a) the transcription of genes into pre-messenger RNA, the splicing of pre-messenger RNA into mature messenger RNA, and the transport of these RNAs between different areas of their parent cells; b) the processing of micro-RNAs that are involved in RNA silencing and post-transcriptional regulation of gene expression; and 3) the detection and repair of damaged DNA. Through these multiple, complex, and often incompletely understood actions, the FET family proteins regulate the cellular expression of diverse genes. [2] However, the genes for FET proteins often undergo various types of mutation. While these mutations and the diseases with which they are associated can be found in the Wikipedia pages on these diseases, this article focuses on one type of mutation, the fusion gene mutation. Fusion genes are formed from two previously independent genes that become united due to a chromosome translocation, deletion of some genetic material in a chromosome, or chromosomal inversion. [1] [8] For example, the EWSR1-FL1 [9] fusion gene is made by a chromosomal translocation which merges part of the EWSR1 gene normally located on band 12 of the long (or "q") arm of chromosome 22 with part of the FLI1 ETS transcription factor family gene normally located on band 24 of the long arm of chromosome 11. The EWSR1-FLI1 fusion gene encodes an EWS-FLI1 chimeric protein which possesses unregulated and excessive FLI1 transcription factor activity which it appears to contribute to the development of Ewing sarcomas. [10] FET fusion genes have attracted recent interest because they have been found to be associated with, and may act to promote the development of, a wide range of soft tissue neoplasms derived from mesencyhmal tissue cells. [3] [7] [11] Detection of a FET gene–containing fusion gene is extremely helpful in diagnosing tumor types, [1] [11] defining the pathogenic mechanisms by which these fusion proteins promote disorders, [3] [12] and thereby identifying potential targets for treating these disorders. [2] [13] The following are examples of these fusion genes' associations with malignant and benign neoplastic tumors. [1] [7]

Malignant neoplasms

Benign neoplasms

Related Research Articles

<span class="mw-page-title-main">Liposarcoma</span> Medical condition

Liposarcomas are the most common subtype of soft tissue sarcomas, accounting for at least 20% of all sarcomas in adults. Soft tissue sarcomas are rare neoplasms with over 150 different histological subtypes or forms. Liposarcomas arise from the precursor lipoblasts of the adipocytes in adipose tissues. Adipose tissues are distributed throughout the body, including such sites as the deep and more superficial layers of subcutaneous tissues as well as in less surgically accessible sites like the retroperitoneum and visceral fat inside the abdominal cavity.

<span class="mw-page-title-main">Desmoplastic small-round-cell tumor</span> Aggressive and rare cancer

Desmoplastic small-round-cell tumor (DSRCT) is an aggressive and rare cancer that primarily occurs as masses in the abdomen. Other areas affected may include the lymph nodes, the lining of the abdomen, diaphragm, spleen, liver, chest wall, skull, spinal cord, large intestine, small intestine, bladder, brain, lungs, testicles, ovaries, and the pelvis. Reported sites of metastatic spread include the liver, lungs, lymph nodes, brain, skull, and bones. It is characterized by the EWS-WT1 fusion protein.

<span class="mw-page-title-main">Ewing sarcoma</span> Type of cancer

Ewing sarcoma is a type of pediatric cancer that forms in bone or soft tissue. Symptoms may include swelling and pain at the site of the tumor, fever, and a bone fracture. The most common areas where it begins are the legs, pelvis, and chest wall. In about 25% of cases, the cancer has already spread to other parts of the body at the time of diagnosis. Complications may include a pleural effusion or paraplegia.

<span class="mw-page-title-main">RNA-binding protein EWS</span> Human protein and coding gene

RNA-binding protein EWS is a protein that in humans is encoded by the EWSR1 gene on human chromosome 22, specifically 22q12.2. It is one of 3 proteins in the FET protein family.

<i>ERG</i> (gene) Protein-coding gene in the species Homo sapiens

ERG is an oncogene. ERG is a member of the ETS family of transcription factors. The ERG gene encodes for a protein, also called ERG, that functions as a transcriptional regulator. Genes in the ETS family regulate embryonic development, cell proliferation, differentiation, angiogenesis, inflammation, and apoptosis.

<span class="mw-page-title-main">RNA-binding protein FUS</span> Human protein and coding gene

RNA-binding protein FUS/TLS, also known as heterogeneous nuclear ribonucleoprotein P2 is a protein that in humans is encoded by the FUS gene.

<span class="mw-page-title-main">Myxoid liposarcoma</span> Medical condition

A myxoid liposarcoma is a malignant adipose tissue neoplasm of myxoid appearance histologically.

<span class="mw-page-title-main">Clear cell sarcoma</span> Rare form of cancer

Clear cell sarcoma is a rare form of cancer called a sarcoma. It is known to occur mainly in the soft tissues and dermis. Rare forms were thought to occur in the gastrointestinal tract before they were discovered to be different and redesignated as gastrointestinal neuroectodermal tumors.

Extraskeletal myxoid chondrosarcoma (EMC) is a rare low-grade malignant mesenchymal neoplasm of the soft tissues, that differs from other sarcomas by unique histology and characteristic chromosomal translocations. There is an uncertain differentiation and neuroendocrine differentiation is even possible.

<span class="mw-page-title-main">Endometrial stromal sarcoma</span> Medical condition

Endometrial stromal sarcoma is a malignant subtype of endometrial stromal tumor arising from the stroma of the endometrium rather than the glands. There are three grades for endometrial stromal tumors, as follows. It was previously known as endolymphatic stromal myosis because of diffuse infiltration of myometrial tissue or the invasion of lymphatic channels.

<span class="mw-page-title-main">Low-grade fibromyxoid sarcoma</span> Medical condition

Low-grade fibromyxoid sarcoma (LGFMS) is a rare type of low-grade sarcoma first described by H. L. Evans in 1987. LGFMS are soft tissue tumors of the mesenchyme-derived connective tissues; on microscopic examination, they are found to be composed of spindle-shaped cells that resemble fibroblasts. These fibroblastic, spindle-shaped cells are neoplastic cells that in most cases of LGFMS express fusion genes, i.e. genes composed of parts of two different genes that form as a result of mutations. The World Health Organization (2020) classified LGFMS as a specific type of tumor in the category of malignant fibroblastic and myofibroblastic tumors.

<span class="mw-page-title-main">Inflammatory myofibroblastic tumour</span> Medical condition

Inflammatory myofibroblastic tumor (IMT) is a rare neoplasm of the mesodermal cells that form the connective tissues which support virtually all of the organs and tissues of the body. IMT was formerly termed inflammatory pseudotumor. Currently, however, inflammatory pseudotumor designates a large and heterogeneous group of soft tissue tumors that includes inflammatory myofibroblastic tumor, plasma cell granuloma, xanthomatous pseudotumor, solitary mast cell granuloma, inflammatory fibrosarcoma, pseudosarcomatous myofibroblastic proliferation, myofibroblastoma, inflammatory myofibrohistiocytic proliferation, and other tumors that develop from connective tissue cells. Inflammatory pseudotumour is a generic term applied to various neoplastic and non-neoplastic tissue lesions which share a common microscopic appearance consisting of spindle cells and a prominent presence of the white blood cells that populate chronic or, less commonly, acute inflamed tissues.

<span class="mw-page-title-main">Unicameral bone cyst</span> Medical condition

A unicameral bone cyst, also known as a simple bone cyst, is a cavity filled with a yellow-colored fluid. It is considered to be benign since it does not spread beyond the bone. Unicameral bone cysts can be classified into two categories: active and latent. An active cyst is adjacent to the epiphyseal plate and tends to grow until it fills the entire diaphysis, the shaft, of the bone; depending on the invasiveness of the cyst, it can cause a pathological fracture or even destroy the epiphyseal plate leading to the permanent shortening of the bone.

<span class="mw-page-title-main">Angiomatoid fibrous histiocytoma</span> Type of tumor which affects children and adolescents

Angiomatoid fibrous histiocytoma(AFH) is a rare soft tissue cancer that affects children and young adults. On November 16, 2020, US MasterChef Junior participant Ben Watkins died from the disease at the age of 14.

<span class="mw-page-title-main">CREB3L1</span> Protein-coding gene in the species Homo sapiens

CAMP responsive element binding protein 3 like 1 is a responsive element binding protein that in humans is encoded by the CREB3L1 gene.

Acral myxoinflammatory fibroblastic sarcoma (AMSF), also termed myxoinflammatory fibroblastic sarcoma (MSF), is a rare, low-grade, soft tissue tumor that the World Health Organization (2020) classified as in the category of rarely metastasizing fibroblastic and myofibroblastic tumors. It is a locally aggressive neoplasm that often recurs at the site of its surgical removal. However, it usually grows slowly and in only 1–2% of cases spreads to distant tissues.

EWS/FLI1 is an oncogenic protein that is pathognomonic for Ewing sarcoma. It is found in approximately 90% of all Ewing sarcoma tumors with the remaining 10% of fusions substituting one fusion partner with a closely related family member.

<span class="mw-page-title-main">Proliferative fasciitis and proliferative myositis</span> Medical condition

Proliferative fasciitis and proliferative myositis (PF/PM) are rare benign soft tissue lesions that increase in size over several weeks and often regress over the ensuing 1–3 months. The lesions in PF/PM are typically obvious tumors or swellings. Historically, many studies had grouped the two descriptive forms of PF/PM as similar disorders with the exception that proliferative fasciitis occurs in subcutaneous tissues while proliferative myositis occurs in muscle tissues. In 2020, the World Health Organization agreed with this view and defined these lesions as virtually identical disorders termed proliferative fasciitis/proliferative myositis or proliferative fasciitis and proliferative myositis. The Organization also classified them as one of the various forms of the fibroblastic and myofibroblastic tumors.

Sclerosing epithelioid fibrosarcoma (SEF) is a very rare malignant tumor of soft tissues that on microscopic examination consists of small round or ovoid neoplastic epithelioid fibroblast-like cells, i.e. cells that have features resembling both epithelioid cells and fibroblasts. In 2020, the World Health Organization classified SEF as a distinct tumor type in the category of malignant fibroblastic and myofibroblastic tumors. However, current studies have reported that low-grade fibromyxoid sarcoma (LGFMS) has many clinically and pathologically important features characteristic of SEF; these studies suggest that LGSFMS may be an early form of, and over time progress to become, a SEF. Since the World Health Organization has classified LGFMS as one of the malignant fibroblastic and myofibroblastic tumors that is distinctly different than SEF, SEF and LGFMS are here regarded as different tumor forms.

Angiofibroma of soft tissue (AFST), also termed angiofibroma, not otherwise specified, is a recently recognized and rare disorder that was classified in the category of benign fibroblastic and myofibroblastic tumors by the World Health Organization in 2020. An AFST tumor is a neoplasm that was first described by A. Mariño-Enríquez and C.D. Fletcher in 2012.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Flucke U, van Noesel MM, Siozopoulou V, Creytens D, Tops BB, van Gorp JM, Hiemcke-Jiwa LS (June 2021). "EWSR1-The Most Common Rearranged Gene in Soft Tissue Lesions, Which Also Occurs in Different Bone Lesions: An Updated Review". Diagnostics (Basel, Switzerland). 11 (6): 1093. doi: 10.3390/diagnostics11061093 . PMC   8232650 . PMID   34203801.
  2. 1 2 3 4 Kovar H (2011). "Dr. Jekyll and Mr. Hyde: The Two Faces of the FUS/EWS/TAF15 Protein Family". Sarcoma. 2011: 837474. doi: 10.1155/2011/837474 . PMC   3005952 . PMID   21197473.
  3. 1 2 3 Lindén M, Thomsen C, Grundevik P, Jonasson E, Andersson D, Runnberg R, Dolatabadi S, Vannas C, Luna Santamaria M, Fagman H, Ståhlberg A, Åman P (May 2019). "FET family fusion oncoproteins target the SWI/SNF chromatin remodeling complex". EMBO Reports. 20 (5). doi:10.15252/embr.201845766. PMC   6500973 . PMID   30962207.
  4. "EWSR1 EWS RNA binding protein 1 [Homo sapiens (Human)] - Gene - NCBI".
  5. "FUS FUS RNA binding protein [Homo sapiens (Human)] - Gene - NCBI".
  6. "TAF15 TATA-box binding protein associated factor 15 [Homo sapiens (Human)] - Gene - NCBI".
  7. 1 2 3 4 Hoell JI, Larsson E, Runge S, Nusbaum JD, Duggimpudi S, Farazi TA, Hafner M, Borkhardt A, Sander C, Tuschl T (November 2011). "RNA targets of wild-type and mutant FET family proteins". Nature Structural & Molecular Biology. 18 (12): 1428–31. doi:10.1038/nsmb.2163. PMC   3230689 . PMID   22081015.
  8. Boone MA, Taslim C, Crow JC, Selich-Anderson J, Watson M, Heppner P, Hamill J, Wood AC, Lessnick SL, Winstanley M (August 2021). "Identification of a novel FUS/ETV4 fusion and comparative analysis with other Ewing sarcoma fusion proteins". Molecular Cancer Research. 19 (11): 1795–1801. doi:10.1158/1541-7786.MCR-21-0354. PMC   8568690 . PMID   34465585. S2CID   237373339.
  9. "FL1 Follicular lymphoma, susceptibility to, 1 [Homo sapiens (Human)] - Gene - NCBI".
  10. Sbaraglia M, Righi A, Gambarotti M, Dei Tos AP (January 2020). "Ewing sarcoma and Ewing-like tumors". Virchows Archiv. 476 (1): 109–119. doi:10.1007/s00428-019-02720-8. PMID   31802230. S2CID   208613433.
  11. 1 2 Krystel-Whittemore M, Taylor MS, Rivera M, Lennerz JK, Le LP, Dias-Santagata D, Iafrate AJ, Deshpande V, Chebib I, Nielsen GP, Wu CL, Nardi V (November 2019). "Novel and established EWSR1 gene fusions and associations identified by next-generation sequencing and fluorescence in-situ hybridization". Human Pathology. 93: 65–73. doi:10.1016/j.humpath.2019.08.006. PMID   31430493. S2CID   201117873.
  12. Agaimy A (January 2020). "What is new in epithelioid soft tissue tumors?". Virchows Archiv. 476 (1): 81–96. doi:10.1007/s00428-019-02677-8. PMID   31686193. S2CID   207893952.
  13. Tanaka M, Nakamura T (July 2021). "Modeling fusion gene-associated sarcoma: Advantages for understanding sarcoma biology and pathology". Pathology International. 71 (10): 643–654. doi:10.1111/pin.13142. PMID   34265156. S2CID   235962562.
  14. "FEV FEV transcription factor, ETS family member [Homo sapiens (human)] - Gene - NCBI". www.ncbi.nlm.nih.gov.
  15. Durer, S.; Shaikh, H. (2021). "Ewing Sarcoma". StatPearls. StatPearls. PMID   32644609.
  16. Perret R, Escuriol J, Velasco V, Mayeur L, Soubeyran I, Delfour C, Aubert S, Polivka M, Karanian M, Meurgey A, Le Guellec S, Weingertner N, Hoeller S, Coindre JM, Larousserie F, Pierron G, Tirode F, Le Loarer F (October 2020). "NFATc2-rearranged sarcomas: clinicopathologic, molecular, and cytogenetic study of 7 cases with evidence of AGGRECAN as a novel diagnostic marker". Modern Pathology. 33 (10): 1930–1944. doi: 10.1038/s41379-020-0542-z . PMID   32327700. S2CID   216085279.
  17. Baisakh MR, Tiwari A, Gandhi JS, Naik S, Sharma SK, Balzer BL, Sharma S, Peddinti K, Jha S, Sahu PK, Pradhan D, Geller M, Amin MB, Dhillon J, Mohanty SK (October 2020). "Primary round cell sarcomas of the urinary bladder with EWSR1 rearrangement: a multi-institutional study of thirteen cases with a review of the literature". Human Pathology. 104: 84–95. doi:10.1016/j.humpath.2020.08.001. PMID   32798549. S2CID   221143155.
  18. Owen I, Yee D, Wyne H, Perdikari TM, Johnson V, Smyth J, Kortum R, Fawzi NL, Shewmaker F (September 2021). "The oncogenic transcription factor FUS-CHOP can undergo nuclear liquid-liquid phase separation". Journal of Cell Science. 134 (17). doi:10.1242/jcs.258578. PMC   8445604 . PMID   34357401.
  19. Wang Z, Zhang L, Ren L, Liu D, Du J, Zhang M, Lou G, Song Y, Wang Y, Wu C, Han G (February 2021). "Distinct clinicopathological features of pulmonary primary angiomatoid fibrous histiocytoma: A report of four new cases and review of the literature". Thoracic Cancer. 12 (3): 314–323. doi:10.1111/1759-7714.13727. PMC   7862796 . PMID   33314685.
  20. Sloan EA, Chiang J, Villanueva-Meyer JE, Alexandrescu S, Eschbacher JM, Wang W, Mafra M, Ud Din N, Carr-Boyd E, Watson M, Punsoni M, Oviedo A, Gilani A, Kleinschmidt-DeMasters BK, Coss DJ, Lopes MB, Raffel C, Berger MS, Chang SM, Reddy A, Ramani B, Ferris SP, Lee JC, Hofmann JW, Cho SJ, Horvai AE, Pekmezci M, Tihan T, Bollen AW, Rodriguez FJ, Ellison DW, Perry A, Solomon DA (July 2021). "Intracranial mesenchymal tumor with FET-CREB fusion-A unifying diagnosis for the spectrum of intracranial myxoid mesenchymal tumors and angiomatoid fibrous histiocytoma-like neoplasms". Brain Pathology (Zurich, Switzerland). 31 (4): e12918. doi:10.1111/bpa.12918. PMC   8089120 . PMID   33141488.
  21. Chen Z, Yang Y, Chen R, Ng CS, Shi H (February 2020). "Primary pulmonary myxoid sarcoma with EWSR1-CREB1 fusion: a case report and review of the literature". Diagnostic Pathology. 15 (1): 15. doi: 10.1186/s13000-020-00930-2 . PMC   7008573 . PMID   32039736.
  22. 1 2 Argani P, Harvey I, Nielsen GP, Takano A, Suurmeijer AJ, Voltaggio L, Zhang L, Sung YS, Stenzinger A, Mechtersheimer G, Dickson BC, Antonescu CR (November 2020). "EWSR1/FUS-CREB fusions define a distinctive malignant epithelioid neoplasm with predilection for mesothelial-lined cavities". Modern Pathology. 33 (11): 2233–2243. doi:10.1038/s41379-020-0646-5. PMC   7584759 . PMID   32770123.
  23. Sivasubramaniam P, Tiegs-Heiden CA, Sturgis CD, Hagen CE, Hartley CP, Thangaiah JJ (September 2021). "Malignant gastrointestinal neuroectodermal tumor: Cytologic, histologic, immunohistochemical, and molecular pitfalls". Annals of Diagnostic Pathology. 55: 151813. doi:10.1016/j.anndiagpath.2021.151813. PMID   34509898. S2CID   237493040.
  24. "ZNF444 zinc finger protein 444 [Homo sapiens (human)] - Gene - NCBI". www.ncbi.nlm.nih.gov.
  25. 1 2 Porteus C, Gan Q, Gong Y, Pantanowitz L, Henderson-Jackson E, Saeed-Vafa D, Mela N, Peterson D, Ahmad N, Ahmed A, Bui M (2020). "Sclerosing epithelioid fibrosarcoma: cytologic characterization with histologic, immunohistologic, molecular, and clinical correlation of 8 cases". Journal of the American Society of Cytopathology. 9 (6): 513–519. doi:10.1016/j.jasc.2020.05.005. PMID   32624384. S2CID   220369922.
  26. "CREB3L2 cAMP responsive element binding protein 3 like 2 [Homo sapiens (human)] - Gene - NCBI". www.ncbi.nlm.nih.gov.
  27. Martínez-Trufero J, Cruz Jurado J, Gómez-Mateo MC, Bernabeu D, Floría LJ, Lavernia J, Sebio A, García Del Muro X, Álvarez R, Correa R, Hernández-León CN, Marquina G, Hindi N, Redondo A, Martínez V, Asencio JM, Mata C, Valverde Morales CM, Martin-Broto J (September 2021). "Uncommon and peculiar soft tissue sarcomas: Multidisciplinary review and practical recommendations for diagnosis and treatment. Spanish group for Sarcoma research (GEIS - GROUP). Part I". Cancer Treatment Reviews. 99: 102259. doi:10.1016/j.ctrv.2021.102259. PMID   34311246.
  28. Sambri A, Righi A, Tuzzato G, Donati D, Bianchi G (2018). "Low-grade fibromyxoid sarcoma of the extremities: a clinicopathologic study of 24 cases and review of the literature". Polish Journal of Pathology. 69 (3): 219–225. doi:10.5114/pjp.2018.79541. hdl: 11585/667908 . PMID   30509048.
  29. Foot O, Hallin M, Jones RL, Sumathi VP, Thway K (April 2021). "EWSR1-SMAD3-Positive Fibroblastic Tumor". International Journal of Surgical Pathology. 29 (2): 179–181. doi:10.1177/1066896920938124. PMID   32615834. S2CID   220326585.
  30. Chrisinger JS, Wehrli B, Dickson BC, Fasih S, Hirbe AC, Shultz DB, Zadeh G, Gupta AA, Demicco EG (November 2020). "Epithelioid and spindle cell rhabdomyosarcoma with FUS-TFCP2 or EWSR1-TFCP2 fusion: report of two cases". Virchows Archiv. 477 (5): 725–732. doi:10.1007/s00428-020-02870-0. PMID   32556562. S2CID   219872625.
  31. Pižem J, Šekoranja D, Zupan A, Boštjančič E, Matjašič A, Mavčič B, Contreras JA, Gazič B, Martinčič D, Snoj Ž, Limpel Novak KA, Salapura V (December 2020). "FUS-NFATC2 or EWSR1-NFATC2 Fusions Are Present in a Large Proportion of Simple Bone Cysts". The American Journal of Surgical Pathology. 44 (12): 1623–1634. doi:10.1097/PAS.0000000000001584. PMID   32991339. S2CID   222166961.
  32. Arbajian E, Magnusson L, Brosjö O, Wejde J, Folpe AL, Nord KH, Mertens F (April 2013). "A benign vascular tumor with a new fusion gene: EWSR1-NFATC1 in hemangioma of the bone". The American Journal of Surgical Pathology. 37 (4): 613–6. doi:10.1097/PAS.0b013e31827ae13b. PMID   23480895. S2CID   26564119.