Fertile eunuch syndrome

Last updated
Fertile eunuch syndrome
Other namesPasqualini syndrome
Autosomal recessive - en.svg
Fertile eunuch syndrome is inherited in an autosomal recessive manner.
Specialty Medical genetics   OOjs UI icon edit-ltr-progressive.svg

The fertile eunuch syndrome or Pasqualini syndrome is a cause of hypogonadotropic hypogonadism caused by a luteinizing hormone deficiency. [1] It is characterized by hypogonadism with spermatogenesis. [2] Pasqualini and Bur published the first case of eunuchoidism with preserved spermatogenesis in 1950 in la Revista de la Asociación Médica Argentina. [3] The hypoandrogenism with spermatogenesis syndrome included:[ citation needed ]

Contents

(a) eunuchoidism,

(b) testis with normal spermatogenesis and full volume, with mature spermatozoids in a high proportion of seminiferous tubes and undifferentiated and immature Leydig cells

(c) full functional compensation through the administration of chorionic gonadotropin hormone, while hCG is administered

(d) total urinary gonadotrophins within normal limits

(e) this definition implies the normal activity of the pituitary and the absence of congenital malformations in general.

In describing five other similar cases in 1953, Mc Cullagh & al [4] [5] coined the term fertile eunuch introducing it in the English literature. Unfortunately, this term is incorrect and should not be employed. Indeed, these patients are not really eunuchs. Moreover, as it will be explained later, they are not usually fertile if not treated.[ citation needed ] A first step in the understanding of the physiopathology of Pasqualini syndrome was the absence of Lutheinizing Hormone (LH) in plasma and urine of patients. The second breakthrough was the functional and genetic studies that validated the hypothesis of a functional deficit of LH in these men. Inactivating LH mutations will then also be described in some women. Different groups [6] [7] [8] [9] [10] demonstrated in these cases a LH with varying degrees of immunological activity but biologically inactive in most of the patients, due to one or more inactivating mutations in the LHB gene. Finally, the full comprehension of Pasqualini syndrome allowed to reverse the hypoandrogenic phenotype and to restore fertility in these patients through the use of chorionic gonadotropin and the modern in-vitro fertility techniques [11] [12]

See also

Related Research Articles

Luteinizing hormone is a hormone produced by gonadotropic cells in the anterior pituitary gland. The production of LH is regulated by gonadotropin-releasing hormone (GnRH) from the hypothalamus. In females, an acute rise of LH triggers ovulation and development of the corpus luteum. In males, where LH had also been called interstitial cell–stimulating hormone (ICSH), it stimulates Leydig cell production of testosterone. It acts synergistically with follicle-stimulating hormone (FSH).

Follicle-stimulating hormone Gonadotropin that regulates the development of reproductive processes

Follicle-stimulating hormone (FSH) is a gonadotropin, a glycoprotein polypeptide hormone. FSH is synthesized and secreted by the gonadotropic cells of the anterior pituitary gland and regulates the development, growth, pubertal maturation, and reproductive processes of the body. FSH and luteinizing hormone (LH) work together in the reproductive system.

Gonadotropins are glycoprotein hormones secreted by gonadotropic cells of the anterior pituitary of vertebrates. This family includes the mammalian hormones follicle-stimulating hormone (FSH) and luteinizing hormone (LH), the placental/chorionic gonadotropins, human chorionic gonadotropin (hCG) and equine chorionic gonadotropin (eCG), as well as at least two forms of fish gonadotropins. These hormones are central to the complex endocrine system that regulates normal growth, sexual development, and reproductive function. LH and FSH are secreted by the anterior pituitary gland, while hCG and eCG are secreted by the placenta in pregnant humans and mares, respectively. The gonadotropins act on the gonads, controlling gamete and sex hormone production.

Hypogonadism means diminished functional activity of the gonads—the testes or the ovaries—that may result in diminished production of sex hormones.

Kallmann syndrome (KS) is a genetic disorder that prevents a person from starting or fully completing puberty. Kallmann syndrome is a form of a group of conditions termed hypogonadotropic hypogonadism. To distinguish it from other forms of hypogonadotropic hypogonadism, Kallmann syndrome has the additional symptom of a total lack of sense of smell (anosmia) or a reduced sense of smell. If left untreated, people will have poorly defined secondary sexual characteristics, show signs of hypogonadism, almost invariably are infertile and are at increased risk of developing osteoporosis. A range of other physical symptoms affecting the face, hands and skeletal system can also occur.

Isolated hypogonadotropic hypogonadism (IHH), also called idiopathic or congenital hypogonadotropic hypogonadism (CHH), as well as isolated or congenital gonadotropin-releasing hormone deficiency (IGD), is a condition which results in a small subset of cases of hypogonadotropic hypogonadism (HH) due to deficiency in or insensitivity to gonadotropin-releasing hormone (GnRH) where the function and anatomy of the anterior pituitary is otherwise normal and secondary causes of HH are not present.

The gonadotropin-releasing hormone receptor (GnRHR), also known as the luteinizing hormone releasing hormone receptor (LHRHR), is a member of the seven-transmembrane, G-protein coupled receptor (GPCR) family. It is the receptor of gonadotropin-releasing hormone (GnRH). The GnRHR is expressed on the surface of pituitary gonadotrope cells as well as lymphocytes, breast, ovary, and prostate.

GNRHR Protein-coding gene in the species Homo sapiens

Gonadotropin-releasing hormone receptor is a protein that in humans is encoded by the GNRHR gene.

FSHB

Follitropin subunit beta also known as follicle-stimulating hormone beta subunit (FSH-B) is a protein that in humans is encoded by the FSHB gene. Alternative splicing results in two transcript variants encoding the same protein.

CGB1 Protein-coding gene in the species Homo sapiens

Choriogonadotropin subunit beta variant 1 is a protein that in humans is encoded by the CGB1 gene.

CGB2 (gene) Protein-coding gene in the species Homo sapiens

Choriogonadotropin subunit beta variant 2 is a protein that in humans is encoded by the CGB2 gene.

Luteinizing hormone beta polypeptide Protein-coding gene in the species Homo sapiens

Luteinizing hormone subunit beta also known as lutropin subunit beta or LHβ is a polypeptide that in association with an alpha subunit common to all gonadotropin hormones forms the reproductive signaling molecule luteinizing hormone. In humans it is encoded by the LHB gene.

Aromatase deficiency Medical condition

Aromatase deficiency is a very rare condition characterised by extremely low levels or complete absence of the enzyme aromatase activity in the body. It is an autosomal recessive disease resulted from various mutations of gene CPY19 (P450arom) which can lead to delayed puberty in females, osteoporosis in males and virilisation in pregnant mothers. As of 2016, only 35 cases have been described in medical literature.

Hypergonadotropic hypogonadism (HH), also known as primary or peripheral/gonadal hypogonadism, is a condition which is characterized by hypogonadism due to an impaired response of the gonads to the gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), and in turn a lack of sex steroid production and elevated gonadotropin levels. HH may present as either congenital or acquired, but the majority of cases are of the former nature.

Leydig cell hypoplasia Medical condition

Leydig cell hypoplasia (LCH), also known as Leydig cell agenesis, is a rare autosomal recessive genetic and endocrine syndrome affecting an estimated 1 in 1,000,000 genetic males. It is characterized by an inability of the body to respond to luteinizing hormone (LH), a gonadotropin which is normally responsible for signaling Leydig cells of the testicles to produce testosterone and other androgen sex hormones. The condition manifests itself as pseudohermaphroditism, hypergonadotropic hypogonadism, reduced or absent puberty, and infertility.

Gonadotropin-releasing hormone (GnRH) insensitivity also known as Isolated gonadotropin-releasing hormone (GnRH)deficiency (IGD) is a rare autosomal recessive genetic and endocrine syndrome which is characterized by inactivating mutations of the gonadotropin-releasing hormone receptor (GnRHR) and thus an insensitivity of the receptor to gonadotropin-releasing hormone (GnRH), resulting in a partial or complete loss of the ability of the gonads to synthesize the sex hormones. The condition manifests itself as isolated hypogonadotropic hypogonadism (IHH), presenting with symptoms such as delayed, reduced, or absent puberty, low or complete lack of libido, and infertility, and is the predominant cause of IHH when it does not present alongside anosmia.

Hypogonadotropic hypogonadism (HH), is due to problems with either the hypothalamus or pituitary gland affecting the hypothalamic-pituitary-gonadal axis. Hypothalamic disorders result from a deficiency in the release of gonadotropic releasing hormone (GnRH), while pituitary gland disorders are due to a deficiency in the release of gonadotropins from the anterior pituitary. GnRH is the central regulator in reproductive function and sexual development via the HPG axis. GnRH is released by GnRH neurons, which are hypothalamic neuroendocrine cells, into the hypophyseal portal system acting on gonadotrophs in the anterior pituitary. The release of gonadotropins, LH and FSH, act on the gonads for the development and maintenance of proper adult reproductive physiology. LH acts on Leydig cells in the male testes and theca cells in the female. FSH acts on Sertoli cells in the male and follicular cells in the female. Combined this causes the secretion of gonadal sex steroids and the initiation of folliculogenesis and spermatogenesis. The production of sex steroids forms a negative feedback loop acting on both the anterior pituitary and hypothalamus causing a pulsatile secretion of GnRH. GnRH neurons lack sex steroid receptors and mediators such as kisspeptin stimulate GnRH neurons for pulsatile secretion of GnRH.

Fezolinetant Chemical compound

Fezolinetant (INN; former developmental code name ESN-364) is a small-molecule, orally active, selective neurokinin-3 (NK3) receptor antagonist which is under development by Ogeda (formerly Euroscreen) for the treatment of sex hormone-related disorders. As of May 2017, it has completed phase I and phase IIa clinical trials for hot flashes in postmenopausal women. Phase IIa trials in polycystic ovary syndrome patients are ongoing. In April 2017, it was announced that Ogeda would be acquired by Astellas Pharma.

Genetics of GnRH deficiency conditions

To date, at least 25 different genes have been implicated in causing gonadotropin-releasing hormone (GnRH) deficiency conditions such as Kallmann syndrome (KS) or other forms of congenital hypogonadotropic hypogonadism (CHH) through a disruption in the production or activity of GnRH. These genes involved cover all forms of inheritance, and no one gene defect has been shown to be common to all cases, which makes genetic testing and inheritance prediction difficult.

Hypergonadotropic hypergonadism is an endocrine situation and subtype of hypergonadism in which both gonadotropin levels and gonadal function, such as sex hormone production, are abnormally high. It can be associated with hyperandrogenism and hyperestrogenism and with gonadal cysts and tumors. It can be caused by medications such as gonadotropins, gonadotropin-releasing hormone agonists, nonsteroidal antiandrogens, and selective estrogen receptor modulators, as well as conditions like human chorionic gonadotropin-secreting tumors, complete androgen insensitivity syndrome, and estrogen insensitivity syndrome.

References

  1. Valdes-Socin H, Rubio Almanza M, Tomé Fernández-Ladreda M, Debray FG, Bours V, Beckers A. Reproduction, Smell and Neurodevelopmental disorders: Genetic defects in different hypogonadotropic hypogonadal syndromes. Frontiers in Endocrinology 2014;jul 9;5:109. doi: 10.3389/fendo.2014.00109.
  2. Valdes-Socin H Beckers A. Pasqualini’s syndrome: hypoandrogenism with spermatogenesis. MEDICINA (Buenos Aires) 2015; 75: 53-58.
  3. Pasqualini RQ, Bur GE. Síndrome hipoandrogénico con gametogénesis conservada. Rev Asoc Méd Argent 1950; 64: 6-10.
  4. McCullagh EP, Beck JC, Schaffenburg CA: A syndrome of eunuchoidism with spermatogenesis, normal urinary FSH and low or normal ICSH: (“Fertile eunuchs”). J Clin Endocrinol Metab 1953; 13: 49.
  5. Pasqualini RQ: Hypoandrogenic syndrome with normal spermatogenesis. J Clin Endocrinol Metab 1953; 13: 128.
  6. Weiss J, Axelrod L, Whitcomb RW, Harris PE, Crowley WF, Jameson JL. Hypogonadism caused by a single amino acid substitution in the beta subunit of luteinizing hormone N Engl J Med. 1992; 326(3):179-83.
  7. Valdes-Socin H, Salvi R, Daly AF, Gaillard RC, Quatresooz P, Tebeu PM et al. Hypogonadism in a patient with a mutation in the luteinizing hormone beta-subunit gene. N Engl J Med. 2004; 351(25):2619-25.
  8. Lofrano-Porto A, Barra GB, Giacomini LA, Nascimento PP, Latronico AC, Casulari LA et al. Luteinizing hormone mutation and hypogonadism in men and women. N Engl J Med 2007 357:897–904.
  9. Achard C, Courtillot C, Lahuna O, Méduri G, Soufir JC, Liere P et al. Normal spermatogenesis in a man with mutant luteinizing hormone. N Engl J Med 2009 361:1856–1863.
  10. Basciani S, Watanabe M, Mariani S, Passeri M, Persichetti A, Fiore D, Scotto d’Abusco A, Caprio M, Lenzi A, Fabbri A, Gnessi L. Hypogonadism in a Patient with Two Novel Mutations of the Luteinizing Hormone–Subunit Gene Expressed in a Compound Heterozygous Form J. Clin Endocrinol Metab 2012; 97: 3031–3038.
  11. Valdes-Socin H, Salvi R, Thiry A, Daly AF, Pralong FP, Gaillard R et al. Testicular effects of isolated luteinizing hormone deficiency and reversal by long-term human chorionic gonadotropin treatment. J Clin Endocrinol Metab. 2009;94(1):3-4.
  12. Valdes-Socin H, Daly AF and Beckers A. Luteinizing Hormone Deficiency: Historical Views and Future Perspectives. Austin Andrology. 2017; 2(1): 1015.