In software engineering, a fluent interface is an object-oriented API whose design relies extensively on method chaining. Its goal is to increase code legibility by creating a domain-specific language (DSL). The term was coined in 2005 by Eric Evans and Martin Fowler. [1]
A fluent interface is normally implemented by using method chaining to implement method cascading (in languages that do not natively support cascading), concretely by having each method return the object to which it is attached[ citation needed ], often referred to as this
or self
. Stated more abstractly, a fluent interface relays the instruction context of a subsequent call in method chaining, where generally the context is
Note that a "fluent interface" means more than just method cascading via chaining; it entails designing an interface that reads like a DSL, using other techniques like "nested functions and object scoping". [1]
The term "fluent interface" was coined in late 2005, though this overall style of interface dates to the invention of method cascading in Smalltalk in the 1970s, and numerous examples in the 1980s. A common example is the iostream library in C++, which uses the <<
or >>
operators for the message passing, sending multiple data to the same object and allowing "manipulators" for other method calls. Other early examples include the Garnet system (from 1988 in Lisp) and the Amulet system (from 1994 in C++) which used this style for object creation and property assignment.
C# uses fluent programming extensively in LINQ to build queries using "standard query operators". The implementation is based on extension methods.
vartranslations=newDictionary<string,string>{{"cat","chat"},{"dog","chien"},{"fish","poisson"},{"bird","oiseau"}};// Find translations for English words containing the letter "a",// sorted by length and displayed in uppercaseIEnumerable<string>query=translations.Where(t=>t.Key.Contains("a")).OrderBy(t=>t.Value.Length).Select(t=>t.Value.ToUpper());// The same query constructed progressively:varfiltered=translations.Where(t=>t.Key.Contains("a"));varsorted=filtered.OrderBy(t=>t.Value.Length);varfinalQuery=sorted.Select(t=>t.Value.ToUpper());
Fluent interface can also be used to chain a set of methods, which operate on/share the same object. Instead of creating a customer class, we can create a data context which can be decorated with fluent interface as follows.
// Defines the data contextclassContext{publicstringFirstName{get;set;}publicstringLastName{get;set;}publicstringSex{get;set;}publicstringAddress{get;set;}}classCustomer{privateContext_context=newContext();// Initializes the context// set the value for propertiespublicCustomerFirstName(stringfirstName){_context.FirstName=firstName;returnthis;}publicCustomerLastName(stringlastName){_context.LastName=lastName;returnthis;}publicCustomerSex(stringsex){_context.Sex=sex;returnthis;}publicCustomerAddress(stringaddress){_context.Address=address;returnthis;}// Prints the data to consolepublicvoidPrint(){Console.WriteLine($"First name: {_context.FirstName} \nLast name: {_context.LastName} \nSex: {_context.Sex} \nAddress: {_context.Address}");}}classProgram{staticvoidMain(string[]args){// Object creationCustomerc1=newCustomer();// Using the method chaining to assign & print data with a single linec1.FirstName("vinod").LastName("srivastav").Sex("male").Address("bangalore").Print();}}
The .NET testing framework NUnit uses a mix of C#'s methods and properties in a fluent style to construct its "constraint based" assertions:
Assert.That(()=>2*2,Is.AtLeast(3).And.AtMost(5));
A common use of the fluent interface in C++ is the standard iostream, which chains overloaded operators.
The following is an example of providing a fluent interface wrapper on top of a more traditional interface in C++:
// Basic definitionclassGlutApp{private:intw_,h_,x_,y_,argc_,display_mode_;char**argv_;char*title_;public:GlutApp(intargc,char**argv){argc_=argc;argv_=argv;}voidsetDisplayMode(intmode){display_mode_=mode;}intgetDisplayMode(){returndisplay_mode_;}voidsetWindowSize(intw,inth){w_=w;h_=h;}voidsetWindowPosition(intx,inty){x_=x;y_=y;}voidsetTitle(constchar*title){title_=title;}voidcreate(){;}};// Basic usageintmain(intargc,char**argv){GlutAppapp(argc,argv);app.setDisplayMode(GLUT_DOUBLE|GLUT_RGBA|GLUT_ALPHA|GLUT_DEPTH);// Set framebuffer paramsapp.setWindowSize(500,500);// Set window paramsapp.setWindowPosition(200,200);app.setTitle("My OpenGL/GLUT App");app.create();}// Fluent wrapperclassFluentGlutApp:privateGlutApp{public:FluentGlutApp(intargc,char**argv):GlutApp(argc,argv){}// Inherit parent constructorFluentGlutApp&withDoubleBuffer(){setDisplayMode(getDisplayMode()|GLUT_DOUBLE);return*this;}FluentGlutApp&withRGBA(){setDisplayMode(getDisplayMode()|GLUT_RGBA);return*this;}FluentGlutApp&withAlpha(){setDisplayMode(getDisplayMode()|GLUT_ALPHA);return*this;}FluentGlutApp&withDepth(){setDisplayMode(getDisplayMode()|GLUT_DEPTH);return*this;}FluentGlutApp&across(intw,inth){setWindowSize(w,h);return*this;}FluentGlutApp&at(intx,inty){setWindowPosition(x,y);return*this;}FluentGlutApp&named(constchar*title){setTitle(title);return*this;}// It doesn't make sense to chain after create(), so don't return *thisvoidcreate(){GlutApp::create();}};// Fluent usageintmain(intargc,char**argv){FluentGlutApp(argc,argv).withDoubleBuffer().withRGBA().withAlpha().withDepth().at(200,200).across(500,500).named("My OpenGL/GLUT App").create();}
An example of a fluent test expectation in the jMock testing framework is: [1]
mock.expects(once()).method("m").with(or(stringContains("hello"),stringContains("howdy")));
The jOOQ library models SQL as a fluent API in Java:
Authorauthor=AUTHOR.as("author");create.selectFrom(author).where(exists(selectOne().from(BOOK).where(BOOK.STATUS.eq(BOOK_STATUS.SOLD_OUT)).and(BOOK.AUTHOR_ID.eq(author.ID))));
The fluflu annotation processor enables the creation of a fluent API using Java annotations.
The JaQue library enables Java 8 Lambdas to be represented as objects in the form of expression trees at runtime, making it possible to create type-safe fluent interfaces, i.e., instead of:
Customerobj=...obj.property("name").eq("John")
One can write:
method<Customer>(customer->customer.getName()=="John")
Also, the mock object testing library EasyMock makes extensive use of this style of interface to provide an expressive programming interface.
CollectionmockCollection=EasyMock.createMock(Collection.class);EasyMock.expect(mockCollection.remove(null)).andThrow(newNullPointerException()).atLeastOnce();
In the Java Swing API, the LayoutManager interface defines how Container objects can have controlled Component placement. One of the more powerful LayoutManager
implementations is the GridBagLayout class which requires the use of the GridBagConstraints
class to specify how layout control occurs. A typical example of the use of this class is something like the following.
GridBagLayoutgl=newGridBagLayout();JPanelp=newJPanel();p.setLayout(gl);JLabell=newJLabel("Name:");JTextFieldnm=newJTextField(10);GridBagConstraintsgc=newGridBagConstraints();gc.gridx=0;gc.gridy=0;gc.fill=GridBagConstraints.NONE;p.add(l,gc);gc.gridx=1;gc.fill=GridBagConstraints.HORIZONTAL;gc.weightx=1;p.add(nm,gc);
This creates a lot of code and makes it difficult to see what exactly is happening here. The Packer
class provides a fluent mechanism, so you would instead write: [2]
JPanelp=newJPanel();Packerpk=newPacker(p);JLabell=newJLabel("Name:");JTextFieldnm=newJTextField(10);pk.pack(l).gridx(0).gridy(0);pk.pack(nm).gridx(1).gridy(0).fillx();
There are many places where fluent APIs can simplify how software is written and help create an API language that helps users be much more productive and comfortable with the API because the return value of a method always provides a context for further actions in that context.
There are many examples of JavaScript libraries that use some variant of this: jQuery probably being the most well known. Typically, fluent builders are used to implement "database queries", for example in the Dynamite client library:
// getting an item from a tableclient.getItem('user-table').setHashKey('userId','userA').setRangeKey('column','@').execute().then(function(data){// data.result: the resulting object})
A simple way to do this in JavaScript is using prototype inheritance and this
.
// example from https://schier.co/blog/2013/11/14/method-chaining-in-javascript.htmlclassKitten{constructor(){this.name='Garfield';this.color='orange';}setName(name){this.name=name;returnthis;}setColor(color){this.color=color;returnthis;}save(){console.log(`saving ${this.name}, the ${this.color} kitten`);returnthis;}}// use itnewKitten().setName('Salem').setColor('black').save();
Scala supports a fluent syntax for both method calls and class mixins, using traits and the with
keyword. For example:
classColor{defrgb():Tuple3[Decimal]}objectBlackextendsColor{overridedefrgb():Tuple3[Decimal]=("0","0","0");}traitGUIWindow{// Rendering methods that return this for fluent drawingdefset_pen_color(color:Color):this.typedefmove_to(pos:Position):this.typedefline_to(pos:Position,end_pos:Position):this.typedefrender():this.type=this// Don't draw anything, just return this, for child implementations to use fluentlydeftop_left():Positiondefbottom_left():Positiondeftop_right():Positiondefbottom_right():Position}traitWindowBorderextendsGUIWindow{defrender():GUIWindow={super.render().move_to(top_left()).set_pen_color(Black).line_to(top_right()).line_to(bottom_right()).line_to(bottom_left()).line_to(top_left())}}classSwingWindowextendsGUIWindow{...}valappWin=newSwingWindow()withWindowBorderappWin.render()
In Raku, there are many approaches, but one of the simplest is to declare attributes as read/write and use the given
keyword. The type annotations are optional, but the native gradual typing makes it much safer to write directly to public attributes.
classEmployee { subsetSalaryofRealwhere * > 0; subsetNonEmptyStringofStrwhere * ~~ /\S/; # at least one non-space characterhasNonEmptyString$.nameisrw; hasNonEmptyString$.surnameisrw; hasSalary$.salaryisrw; methodgist { returnqq:to[END]; Name: $.name Surname: $.surname Salary: $.salary END } } my$employee = Employee.new(); given$employee { .name = 'Sally'; .surname = 'Ride'; .salary = 200; } say$employee; # Output:# Name: Sally# Surname: Ride# Salary: 200
In PHP, one can return the current object by using the $this
special variable which represent the instance. Hence return $this;
will make the method return the instance. The example below defines a class Employee
and three methods to set its name, surname and salary. Each return the instance of the Employee
class allowing to chain methods.
<?phpdeclare(strict_types=1);finalclassEmployee{privatestring$name;privatestring$surname;privatestring$salary;publicfunctionsetName(string$name):self{$this->name=$name;return$this;}publicfunctionsetSurname(string$surname):self{$this->surname=$surname;return$this;}publicfunctionsetSalary(string$salary):self{$this->salary=$salary;return$this;}publicfunction__toString():string{return<<<INFO Name: {$this->name} Surname: {$this->surname} Salary: {$this->salary}INFO;}}# Create a new instance of the Employee class, Tom Smith, with a salary of 100:$employee=(newEmployee())->setName('Tom')->setSurname('Smith')->setSalary('100');# Display the value of the Employee instance:echo$employee;# Display:# Name: Tom# Surname: Smith# Salary: 100
In Python, returning self
in the instance method is one way to implement the fluent pattern.
It is however discouraged by the language’s creator, Guido van Rossum, [3] and therefore considered unpythonic (not idiomatic) for operations that do not return new values. Van Rossum provides string processing operations as example where he sees the fluent pattern appropriate.
classPoem:def__init__(self,title:str)->None:self.title=titledefindent(self,spaces:int):"""Indent the poem with the specified number of spaces."""self.title=" "*spaces+self.titlereturnselfdefsuffix(self,author:str):"""Suffix the poem with the author name."""self.title=f"{self.title} - {author}"returnself
>>> Poem("Road Not Travelled").indent(4).suffix("Robert Frost").title' Road Not Travelled - Robert Frost'
In Swift 3.0+ returning self
in the functions is one way to implement the fluent pattern.
classPerson{varfirstname:String=""varlastname:String=""varfavoriteQuote:String=""@discardableResultfuncset(firstname:String)->Self{self.firstname=firstnamereturnself}@discardableResultfuncset(lastname:String)->Self{self.lastname=lastnamereturnself}@discardableResultfuncset(favoriteQuote:String)->Self{self.favoriteQuote=favoriteQuotereturnself}}
letperson=Person().set(firstname:"John").set(lastname:"Doe").set(favoriteQuote:"I like turtles")
It's possible to create immutable fluent interfaces that utilise copy-on-write semantics. In this variation of the pattern, instead of modifying internal properties and returning a reference to the same object, the object is instead cloned, with properties changed on the cloned object, and that object returned.
The benefit of this approach is that the interface can be used to create configurations of objects that can fork off from a particular point; Allowing two or more objects to share a certain amount of state, and be used further without interfering with each other.
Using copy-on-write semantics, the JavaScript example from above becomes:
classKitten{constructor(){this.name='Garfield';this.color='orange';}setName(name){constcopy=newKitten();copy.color=this.color;copy.name=name;returncopy;}setColor(color){constcopy=newKitten();copy.name=this.name;copy.color=color;returncopy;}// ...}// use itconstkitten1=newKitten().setName('Salem');constkitten2=kitten1.setColor('black');console.log(kitten1,kitten2);// -> Kitten({ name: 'Salem', color: 'orange' }), Kitten({ name: 'Salem', color: 'black' })
In typed languages, using a constructor requiring all parameters will fail at compilation time while the fluent approach will only be able to generate runtime errors, missing all the type-safety checks of modern compilers. It also contradicts the "fail-fast" approach for error protection.
Single-line chained statements may be more difficult to debug as debuggers may not be able to set breakpoints within the chain. Stepping through a single-line statement in a debugger may also be less convenient.
java.nio.ByteBuffer.allocate(10).rewind().limit(100);
Another issue is that it may not be clear which of the method calls caused an exception, in particular if there are multiple calls to the same method. These issues can be overcome by breaking the statement into multiple lines which preserves readability while allowing the user to set breakpoints within the chain and to easily step through the code line by line:
java.nio.ByteBuffer.allocate(10).rewind().limit(100);
However, some debuggers always show the first line in the exception backtrace, although the exception has been thrown on any line.
Adding logging into the middle of a chain of fluent calls can be an issue. E.g., given:
ByteBufferbuffer=ByteBuffer.allocate(10).rewind().limit(100);
To log the state of buffer
after the rewind()
method call, it is necessary to break the fluent calls:
ByteBufferbuffer=ByteBuffer.allocate(10).rewind();log.debug("First byte after rewind is "+buffer.get(0));buffer.limit(100);
This can be worked around in languages that support extension methods by defining a new extension to wrap the desired logging functionality, for example in C# (using the same Java ByteBuffer example as above):
staticclassByteBufferExtensions{publicstaticByteBufferLog(thisByteBufferbuffer,Loglog,Action<ByteBuffer>getMessage){stringmessage=getMessage(buffer);log.debug(message);returnbuffer;}}// Usage:ByteBuffer.Allocate(10).Rewind().Log(log,b=>"First byte after rewind is "+b.Get(0)).Limit(100);
Subclasses in strongly typed languages (C++, Java, C#, etc.) often have to override all methods from their superclass that participate in a fluent interface in order to change their return type. For example:
classA{publicAdoThis(){...}}classBextendsA{publicBdoThis(){super.doThis();returnthis;}// Must change return type to B.publicBdoThat(){...}}...Aa=newB().doThat().doThis();// This would work even without overriding A.doThis().Bb=newB().doThis().doThat();// This would fail if A.doThis() wasn't overridden.
Languages that are capable of expressing F-bound polymorphism can use it to avoid this difficulty. For example:
abstractclassAbstractA<TextendsAbstractA<T>>{@SuppressWarnings("unchecked")publicTdoThis(){...;return(T)this;}}classAextendsAbstractA<A>{}classBextendsAbstractA<B>{publicBdoThat(){...;returnthis;}}...Bb=newB().doThis().doThat();// Works!Aa=newA().doThis();// Also works.
Note that in order to be able to create instances of the parent class, we had to split it into two classes — AbstractA
and A
, the latter with no content (it would only contain constructors if those were needed). The approach can easily be extended if we want to have sub-subclasses (etc.) too:
abstractclassAbstractB<TextendsAbstractB<T>>extendsAbstractA<T>{@SuppressWarnings("unchecked")publicTdoThat(){...;return(T)this;}}classBextendsAbstractB<B>{}abstractclassAbstractC<TextendsAbstractC<T>>extendsAbstractB<T>{@SuppressWarnings("unchecked")publicTfoo(){...;return(T)this;}}classCextendsAbstractC<C>{}...Cc=newC().doThis().doThat().foo();// Works!Bb=newB().doThis().doThat();// Still works.
In a dependently typed language, e.g. Scala, methods can also be explicitly defined as always returning this
and thus can be defined only once for subclasses to take advantage of the fluent interface:
classA{defdoThis():this.type={...}// returns this, and always this.}classBextendsA{// No override needed!defdoThat():this.type={...}}...vala:A=newB().doThat().doThis();// Chaining works in both directions.valb:B=newB().doThis().doThat();// And, both method chains result in a B!