Classification | Osmolarity, Analytical chemistry |
---|---|
Analytes | A phenomenon caused by solutes that can measure with this technique |
The freezing point depression osmometer is an osmometer that is used in determining a solution's osmotic concentration as its osmotically active aspects depress its freezing point.
In the past, freezing point osmometry has been used to assess the osmotic strength of colloids and solutions. The osmometer uses the solution's freezing point depression to establish its strength. It is also used to determine the level of osmotically appropriate body fluid in various chemicals dissolved in the blood using the relationship in which a mole of dissolved substance reduces the freezing point of a kilogram of water by 1.86 °C (35.35 °F). [1] The freezing point depression osmometer is also used in various medical practices, including pharmaceutical manufacturing, quality control laboratories, and clinical chemistry.
Freezing point depression osmometers are utilized to determine a solution's osmotic strength. It is the approach that is most frequently used for a variety of medical tasks. It is used in assessing the osmotic strength of colloids as well as solutions. [2]
The freezing point depression osmometer operates by using the solution's freezing point to determine the concentration of the solution. It uses a nanoliter nanometer, a device that facilitates the establishment of the solution's melting and freezing points. Calibration, loading, deep freezing, and determination are the four separate procedures involved in determining the freezing and melting points. The concentration of the solution can be determined by knowing the number of particles present in it, which can be done by determining the freezing point of the solution.
When particles are dissolved in a solution, their freezing point is lowered compared to that of the original solvent. A further increase in the solute decreases the freezing point even further. The freezing point depression osmometer uses the solution's freezing point to establish its concentration. [3] The freezing point depression osmometer is calibrated using standards that are within the solution's osmolality range.
Manufacturers | Tomas er |
---|---|
Other techniques | |
Related | Melting-point depression, Boiling-point elevation |
The use of osmometers began in the late nineteenth century after Van't Hoff won a Nobel Prize for his research and discovery that the relationship between the osmotic pressure of dilute colloid solutions and concentration was consistent with the ideal gas law. [4] Since then, osmometers have been used to measure the osmotic strength of a diluted solution at different levels of concentration.
One of the earliest uses of the method was in an analytical study, in which the urine osmolality of 1,991 dogs was tested. [5] [6] The study established its advantages over other conventional concentration osmometers which rely on the osmotic pressure profile and it was found to be ideal for dilute, biological samples.
Freezing point depression osmometers are applied in various areas of the medical field. The approach is used in determining the colloidal aspects of solutions. [7] In the present day, the method is applied, among other areas, in measuring osmolarity in lens care solutions as well as eye drops. [8] It is further used in clinical chemistry, pharmaceutical, and quality control laboratories, where it facilitates different processes. As compared to the other methods, the freezing point depression osmometer has a high level of precision and accuracy, making its application in clinical practices safe. It is applied in various processes that involve the manufacturing of drugs. [9] Urine osmolality is also used to measure urine concentration accurately and thus determine renal function and body fluid homeostasis.
Osmometry is widely used in pharmaceuticals, quality control laboratories, and clinical chemistry to measure the osmolality in aqueous solutions accurately. It is commonly used in medical clinics to assist with various pharmaceutical practices, [10] including the development of lens care solutions and eye drops.
Alternative osmometer methods include membrane osmometry, which determines the osmotic pressure of solutions, and vapor pressure osmometry, which assesses the concentration of particles that minimize a solution's vapor pressure and melting, as well as the freezing points of aqueous solutions. [11]
A colloid is a mixture in which one substance consisting of microscopically dispersed insoluble particles is suspended throughout another substance. Some definitions specify that the particles must be dispersed in a liquid, while others extend the definition to include substances like aerosols and gels. The term colloidal suspension refers unambiguously to the overall mixture. A colloid has a dispersed phase and a continuous phase. The dispersed phase particles have a diameter of approximately 1 nanometre to 1 micrometre.
Oncotic pressure, or colloid osmotic-pressure, is a type of osmotic pressure induced by the plasma proteins, notably albumin, in a blood vessel's plasma that causes a pull on fluid back into the capillary.
In chemistry, colligative properties are those properties of solutions that depend on the ratio of the number of solute particles to the number of solvent particles in a solution, and not on the nature of the chemical species present. The number ratio can be related to the various units for concentration of a solution such as molarity, molality, normality (chemistry), etc. The assumption that solution properties are independent of nature of solute particles is exact only for ideal solutions, which are solutions that exhibit thermodynamic properties analogous to those of an ideal gas, and is approximate for dilute real solutions. In other words, colligative properties are a set of solution properties that can be reasonably approximated by the assumption that the solution is ideal.
Freezing-point depression is a drop in the maximum temperature at which a substance freezes, caused when a smaller amount of another, non-volatile substance is added. Examples include adding salt into water, alcohol in water, ethylene or propylene glycol in water, adding copper to molten silver, or the mixing of two solids such as impurities into a finely powdered drug.
The van 't Hoff factor i is a measure of the effect of a solute on colligative properties such as osmotic pressure, relative lowering in vapor pressure, boiling-point elevation and freezing-point depression. The van 't Hoff factor is the ratio between the actual concentration of particles produced when the substance is dissolved and the concentration of a substance as calculated from its mass. For most non-electrolytes dissolved in water, the van 't Hoff factor is essentially 1.
Micellar electrokinetic chromatography (MEKC) is a chromatography technique used in analytical chemistry. It is a modification of capillary electrophoresis (CE), extending its functionality to neutral analytes, where the samples are separated by differential partitioning between micelles and a surrounding aqueous buffer solution.
Cyclodextrins are a family of cyclic oligosaccharides, consisting of a macrocyclic ring of glucose subunits joined by α-1,4 glycosidic bonds. Cyclodextrins are produced from starch by enzymatic conversion. They are used in food, pharmaceutical, drug delivery, and chemical industries, as well as agriculture and environmental engineering.
An osmometer is a device for measuring the osmotic strength of a solution, colloid, or compound.
In clinical chemistry, the osmol gap is the difference between measured blood serum osmolality and calculated serum osmolality.
Osmotic concentration, formerly known as osmolarity, is the measure of solute concentration, defined as the number of osmoles (Osm) of solute per litre (L) of solution. The osmolarity of a solution is usually expressed as Osm/L, in the same way that the molarity of a solution is expressed as "M". Whereas molarity measures the number of moles of solute per unit volume of solution, osmolarity measures the number of osmoles of solute particles per unit volume of solution. This value allows the measurement of the osmotic pressure of a solution and the determination of how the solvent will diffuse across a semipermeable membrane (osmosis) separating two solutions of different osmotic concentration.
Chiral column chromatography is a variant of column chromatography that is employed for the separation of chiral compounds, i.e. enantiomers, in mixtures such as racemates or related compounds. The chiral stationary phase (CSP) is made of a support, usually silica based, on which a chiral reagent or a macromolecule with numerous chiral centers is bonded or immobilized.
Plasma osmolality measures the body's electrolyte–water balance. There are several methods for arriving at this quantity through measurement or calculation.
Wet chemistry is a form of analytical chemistry that uses classical methods such as observation to analyze materials. The term wet chemistry is used as most analytical work is done in the liquid phase. Wet chemistry is also known as bench chemistry, since many tests are performed at lab benches.
Static light scattering is a technique in physical chemistry that measures the intensity of the scattered light to obtain the average molecular weight Mw of a macromolecule like a polymer or a protein in solution. Measurement of the scattering intensity at many angles allows calculation of the root mean square radius, also called the radius of gyration Rg. By measuring the scattering intensity for many samples of various concentrations, the second virial coefficient, A2, can be calculated.
Bittern, or nigari, is the salt solution formed when halite precipitates from seawater or brines. Bitterns contain magnesium, calcium, and potassium ions as well as chloride, sulfate, iodide, and other ions.
Urine osmolality is a measure of urine concentration, in which large values indicate concentrated urine and small values indicate diluted urine. Consumption of water affects the osmolality of urine.
Ethylene glycol poisoning is poisoning caused by drinking ethylene glycol. Early symptoms include intoxication, vomiting and abdominal pain. Later symptoms may include a decreased level of consciousness, headache, and seizures. Long term outcomes may include kidney failure and brain damage. Toxicity and death may occur after drinking even in a small amount as ethylene glycol is more toxic than other diols.
Isopropyl alcohol is a colorless, flammable, organic compound with a pungent alcoholic odor.
A hydrophile is a molecule or other molecular entity that is attracted to water molecules and tends to be dissolved by water.
A depletion force is an effective attractive force that arises between large colloidal particles that are suspended in a dilute solution of depletants, which are smaller solutes that are preferentially excluded from the vicinity of the large particles. One of the earliest reports of depletion forces that lead to particle coagulation is that of Bondy, who observed the separation or "creaming" of rubber latex upon addition of polymer depletant molecules to solution. More generally, depletants can include polymers, micelles, osmolytes, ink, mud, or paint dispersed in a continuous phase.