Fundamental theorem of Hilbert spaces

Last updated

In mathematics, specifically in functional analysis and Hilbert space theory, the fundamental theorem of Hilbert spaces gives a necessarily and sufficient condition for a Hausdorff pre-Hilbert space to be a Hilbert space in terms of the canonical isometry of a pre-Hilbert space into its anti-dual.

Contents

Preliminaries

Antilinear functionals and the anti-dual

Suppose that H is a topological vector space (TVS). A function f : H is called semilinear or antilinear [1] if for all x, yH and all scalars c ,

The vector space of all continuous antilinear functions on H is called the anti-dual space or complex conjugate dual space of H and is denoted by (in contrast, the continuous dual space of H is denoted by ), which we make into a normed space by endowing it with the canonical norm (defined in the same way as the canonical norm on the continuous dual space of H). [1]

Pre-Hilbert spaces and sesquilinear forms

A sesquilinear form is a map B : H × H such that for all yH, the map defined by xB(x, y) is linear, and for all xH, the map defined by yB(x, y) is antilinear. [1] Note that in Physics, the convention is that a sesquilinear form is linear in its second coordinate and antilinear in its first coordinate.

A sesquilinear form on H is called positive definite if B(x, x) > 0 for all non-0 xH; it is called non-negative if B(x, x) ≥ 0 for all xH. [1] A sesquilinear form B on H is called a Hermitian form if in addition it has the property that for all x, yH. [1]

Pre-Hilbert and Hilbert spaces

A pre-Hilbert space is a pair consisting of a vector space H and a non-negative sesquilinear form B on H; if in addition this sesquilinear form B is positive definite then (H, B) is called a Hausdorff pre-Hilbert space. [1] If B is non-negative then it induces a canonical seminorm on H, denoted by , defined by xB(x, x)1/2, where if B is also positive definite then this map is a norm. [1] This canonical semi-norm makes every pre-Hilbert space into a seminormed space and every Hausdorff pre-Hilbert space into a normed space. The sesquilinear form B : H × H is separately uniformly continuous in each of its two arguments and hence can be extended to a separately continuous sesquilinear form on the completion of H; if H is Hausdorff then this completion is a Hilbert space. [1] A Hausdorff pre-Hilbert space that is complete is called a Hilbert space .

Canonical map into the anti-dual

Suppose (H, B) is a pre-Hilbert space. If hH, we define the canonical maps:

B(h, •) : H      where      yB(h, y),     and
B(•, h) : H      where      xB(x, h)

The canonical map [1] from H into its anti-dual is the map

      defined by      xB(x, •).

If (H, B) is a pre-Hilbert space then this canonical map is linear and continuous; this map is an isometry onto a vector subspace of the anti-dual if and only if (H, B) is a Hausdorff pre-Hilbert. [1]

There is of course a canonical antilinear surjective isometry that sends a continuous linear functional f on H to the continuous antilinear functional denoted by f and defined by xf (x).

Fundamental theorem

Fundamental theorem of Hilbert spaces: [1] Suppose that (H, B) is a Hausdorff pre-Hilbert space where B : H × H is a sesquilinear form that is linear in its first coordinate and antilinear in its second coordinate. Then the canonical linear mapping from H into the anti-dual space of H is surjective if and only if (H, B) is a Hilbert space, in which case the canonical map is a surjective isometry of H onto its anti-dual.

See also

Related Research Articles

In mathematics, more specifically in functional analysis, a Banach space is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well defined limit that is within the space.

In mathematics, any vector space has a corresponding dual vector space consisting of all linear forms on , together with the vector space structure of pointwise addition and scalar multiplication by constants.

Inner product space Generalization of the dot product; used to define Hilbert spaces

In mathematics, an inner product space is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often denoted with angle brackets such as in . Inner products allow formal definitions of intuitive geometric notions, such as lengths, angles, and orthogonality of vectors. Inner product spaces generalize Euclidean vector spaces, in which the inner product is the dot product or scalar product of Cartesian coordinates. Inner product spaces of infinite dimension are widely used in functional analysis. Inner product spaces over the field of complex numbers are sometimes referred to as unitary spaces. The first usage of the concept of a vector space with an inner product is due to Giuseppe Peano, in 1898.

Normed vector space Vector space on which a distance is defined

In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers, on which a norm is defined. A norm is the formalization and the generalization to real vector spaces of the intuitive notion of "length" in the real world. A norm is a real-valued function defined on the vector space that is commonly denoted and has the following properties:

  1. It is nonnegative, meaning that for every vector
  2. It is positive on nonzero vectors, that is,
  3. For every vector and every scalar
  4. The triangle inequality holds; that is, for every vectors and

The Riesz representation theorem, sometimes called the Riesz–Fréchet representation theorem after Frigyes Riesz and Maurice René Fréchet, establishes an important connection between a Hilbert space and its continuous dual space. If the underlying field is the real numbers, the two are isometrically isomorphic; if the underlying field is the complex numbers, the two are isometrically anti-isomorphic. The (anti-) isomorphism is a particular natural isomorphism.

In mathematics, weak topology is an alternative term for certain initial topologies, often on topological vector spaces or spaces of linear operators, for instance on a Hilbert space. The term is most commonly used for the initial topology of a topological vector space with respect to its continuous dual. The remainder of this article will deal with this case, which is one of the concepts of functional analysis.

In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs.

In the area of mathematics known as functional analysis, a reflexive space is a locally convex topological vector space (TVS) for which the canonical evaluation map from into its bidual is an isomorphism of TVSs. Since a normable TVS is reflexive if and only if it is semi-reflexive, every normed space is reflexive if and only if the canonical evaluation map from into its bidual is surjective; in this case the normed space is necessarily also a Banach space. In 1951, R. C. James discovered a Banach space, now known as James' space, that is not reflexive but is nevertheless isometrically isomorphic to its bidual.

In mathematics, a function between two complex vector spaces is said to be antilinear or conjugate-linear if

In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals.

In mathematics, a sesquilinear form is a generalization of a bilinear form that, in turn, is a generalization of the concept of the dot product of Euclidean space. A bilinear form is linear in each of its arguments, but a sesquilinear form allows one of the arguments to be "twisted" in a semilinear manner, thus the name; which originates from the Latin numerical prefix sesqui- meaning "one and a half". The basic concept of the dot product – producing a scalar from a pair of vectors – can be generalized by allowing a broader range of scalar values and, perhaps simultaneously, by widening the definition of a vector.

In linear algebra, the transpose of a linear map between two vector spaces, defined over the same field, is an induced map between the dual spaces of the two vector spaces. The transpose or algebraic adjoint of a linear map is often used to study the original linear map. This concept is generalised by adjoint functors.

In functional analysis and related areas of mathematics, a sequence space is a vector space whose elements are infinite sequences of real or complex numbers. Equivalently, it is a function space whose elements are functions from the natural numbers to the field K of real or complex numbers. The set of all such functions is naturally identified with the set of all possible infinite sequences with elements in K, and can be turned into a vector space under the operations of pointwise addition of functions and pointwise scalar multiplication. All sequence spaces are linear subspaces of this space. Sequence spaces are typically equipped with a norm, or at least the structure of a topological vector space.

In mathematics, nuclear spaces are topological vector spaces that can be viewed as a generalization of finite dimensional Euclidean spaces and share many of their desirable properties. Nuclear spaces are however quite different from Hilbert spaces, another generalization of finite dimensional Euclidean spaces. They were introduced by Alexander Grothendieck.

In mathematics, there are usually many different ways to construct a topological tensor product of two topological vector spaces. For Hilbert spaces or nuclear spaces there is a simple well-behaved theory of tensor products, but for general Banach spaces or locally convex topological vector spaces the theory is notoriously subtle.

In the area of mathematics known as functional analysis, a semi-reflexive space is a locally convex topological vector space (TVS) X such that the canonical evaluation map from X into its bidual is bijective. If this map is also an isomorphism of TVSs then it is called reflexive.

In functional analysis and related areas of mathematics, a complete topological vector space is a topological vector space (TVS) with the property that whenever points get progressively closer to each other, then there exists some point towards which they all get closer. The notion of "points that get progressively closer" is made rigorous by Cauchy nets or Cauchy filters, which are generalizations of Cauchy sequences, while "point towards which they all get closer" means that this Cauchy net or filter converges to The notion of completeness for TVSs uses the theory of uniform spaces as a framework to generalize the notion of completeness for metric spaces. But unlike metric-completeness, TVS-completeness does not depend on any metric and is defined for all TVSs, including those that are not metrizable or Hausdorff.

In mathematics, nuclear operators are an important class of linear operators introduced by Alexander Grothendieck in his doctoral dissertation. Nuclear operators are intimately tied to the projective tensor product of two topological vector spaces (TVSs).

In mathematics, a dual system, dual pair, or duality over a field is a triple consisting of two vector spaces and over and a non-degenerate bilinear map . Duality theory, the study of dual systems, is part of functional analysis.

This is a glossary for the terminology in a mathematical field of functional analysis.

References