Gravitomagnetic clock effect

Last updated

In physics, the gravitomagnetic clock effect is a deviation from Kepler's third law that, according to the weak-field and slow-motion approximation of general relativity, will be suffered by a particle in orbit around a (slowly) spinning body, such as a typical planet or star.

Contents

Explanation

According to general relativity, in its weak-field and slow-motion linearized approximation, a slowly spinning body induces an additional component of the gravitational field that acts on a freely-falling test particle with a non-central, gravitomagnetic Lorentz-like force.

Among its consequences on the particle's orbital motion there is a small correction to Kepler's third law, namely

where TKep is the particle's period, M is the mass of the central body, and a is the semimajor axis of the particle's ellipse. If the orbit of the particle is circular and lies in the equatorial plane of the central body, the correction is

where S is the central body's angular momentum and c is the speed of light in vacuum.

Particles orbiting in opposite directions experience gravitomagnetic corrections TGvm with opposite signs, so that the difference of their orbital periods would cancel the standard Keplerian terms and would add the gravitomagnetic ones. [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [ excessive citations ]

Note that the + sign occurs for particle's corotation with respect to the rotation of the central body, whereas the sign is for counter-rotation. That is, if the satellite orbits in the same direction as the planet spins, it takes more time to make a full orbit, whereas if it moves oppositely with respect to the planet's rotation its orbital period gets shorter.

See also

Related Research Articles

<span class="mw-page-title-main">General relativity</span> Theory of gravitation as curved spacetime

General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second-order partial differential equations.

In general relativity, a naked singularity is a hypothetical gravitational singularity without an event horizon.

<span class="mw-page-title-main">Alcubierre drive</span> Hypothetical FTL transportation by warping space

The Alcubierre drive is a speculative warp drive idea according to which a spacecraft could achieve apparent faster-than-light travel by contracting space in front of it and expanding space behind it, under the assumption that a configurable energy-density field lower than that of vacuum could be created. Proposed by theoretical physicist Miguel Alcubierre in 1994, the Alcubierre drive is based on a solution of Einstein's field equations. Since those solutions are metric tensors, the Alcubierre drive is also referred to as Alcubierre metric.

<span class="mw-page-title-main">Black hole thermodynamics</span> Area of study

In physics, black hole thermodynamics is the area of study that seeks to reconcile the laws of thermodynamics with the existence of black hole event horizons. As the study of the statistical mechanics of black-body radiation led to the development of the theory of quantum mechanics, the effort to understand the statistical mechanics of black holes has had a deep impact upon the understanding of quantum gravity, leading to the formulation of the holographic principle.

In particle physics, the hypothetical dilaton particle is a particle of a scalar field that appears in theories with extra dimensions when the volume of the compactified dimensions varies. It appears as a radion in Kaluza–Klein theory's compactifications of extra dimensions. In Brans–Dicke theory of gravity, Newton's constant is not presumed to be constant but instead 1/G is replaced by a scalar field and the associated particle is the dilaton.

The Immirzi parameter is a numerical coefficient appearing in loop quantum gravity (LQG), a nonperturbative theory of quantum gravity. The Immirzi parameter measures the size of the quantum of area in Planck units. As a result, its value is currently fixed by matching the semiclassical black hole entropy, as calculated by Stephen Hawking, and the counting of microstates in loop quantum gravity.

The Pioneer anomaly, or Pioneer effect, was the observed deviation from predicted accelerations of the Pioneer 10 and Pioneer 11 spacecraft after they passed about 20 astronomical units (3×109 km; 2×109 mi) on their trajectories out of the Solar System. The apparent anomaly was a matter of much interest for many years but has been subsequently explained by anisotropic radiation pressure caused by the spacecraft's heat loss.

<span class="mw-page-title-main">Quantum field theory in curved spacetime</span> Extension of quantum field theory to curved spacetime

In theoretical physics, quantum field theory in curved spacetime (QFTCS) is an extension of quantum field theory from Minkowski spacetime to a general curved spacetime. This theory uses a semi-classical approach; it treats spacetime as a fixed, classical background, while giving a quantum-mechanical description of the matter and energy propagating through that spacetime. A general prediction of this theory is that particles can be created by time-dependent gravitational fields (multigraviton pair production), or by time-independent gravitational fields that contain horizons. The most famous example of the latter is the phenomenon of Hawking radiation emitted by black holes.

Numerical relativity is one of the branches of general relativity that uses numerical methods and algorithms to solve and analyze problems. To this end, supercomputers are often employed to study black holes, gravitational waves, neutron stars and many other phenomena described by Albert Einstein's theory of general relativity. A currently active field of research in numerical relativity is the simulation of relativistic binaries and their associated gravitational waves.

In general relativity, a geon is a nonsingular electromagnetic or gravitational wave which is held together in a confined region by the gravitational attraction of its own field energy. They were first investigated theoretically in 1955 by J. A. Wheeler, who coined the term as a contraction of "gravitational electromagnetic entity".

<span class="mw-page-title-main">Gravitational-wave astronomy</span> Branch of astronomy using gravitational waves

Gravitational-wave astronomy is a subfield of astronomy concerned with the detection and study of gravitational waves emitted by astrophysical sources.

In classical theories of gravitation, the changes in a gravitational field propagate. A change in the distribution of energy and momentum of matter results in subsequent alteration, at a distance, of the gravitational field which it produces. In the relativistic sense, the "speed of gravity" refers to the speed of a gravitational wave, which, as predicted by general relativity and confirmed by observation of the GW170817 neutron star merger, is equal to the speed of light (c).

<span class="mw-page-title-main">Gravitoelectromagnetism</span> Analogies between Maxwells and Einsteins field equations

Gravitoelectromagnetism, abbreviated GEM, refers to a set of formal analogies between the equations for electromagnetism and relativistic gravitation; specifically: between Maxwell's field equations and an approximation, valid under certain conditions, to the Einstein field equations for general relativity. Gravitomagnetism is a widely used term referring specifically to the kinetic effects of gravity, in analogy to the magnetic effects of moving electric charge. The most common version of GEM is valid only far from isolated sources, and for slowly moving test particles.

Frame-dragging is an effect on spacetime, predicted by Albert Einstein's general theory of relativity, that is due to non-static stationary distributions of mass–energy. A stationary field is one that is in a steady state, but the masses causing that field may be non-static ⁠— rotating, for instance. More generally, the subject that deals with the effects caused by mass–energy currents is known as gravitoelectromagnetism, which is analogous to the magnetism of classical electromagnetism.

In mathematical physics, vanishing scalar invariant (VSI) spacetimes are Lorentzian manifolds with all polynomial curvature invariants of all orders vanishing. Although the only Riemannian manifold with VSI property is flat space, the Lorentzian case admits nontrivial spacetimes with this property. Distinguishing these VSI spacetimes from Minkowski spacetime requires comparing non-polynomial invariants or carrying out the full Cartan–Karlhede algorithm on non-scalar quantities.

<span class="mw-page-title-main">Shape dynamics</span>

In theoretical physics, shape dynamics is a theory of gravity that implements Mach's principle, developed with the specific goal to obviate the problem of time and thereby open a new path toward the resolution of incompatibilities between general relativity and quantum mechanics.

Ignazio Ciufolini is an Italian physicist active in the field of gravitational physics and general relativity.

In physics, specifically general relativity, the Mathisson–Papapetrou–Dixon equations describe the motion of a massive spinning body moving in a gravitational field. Other equations with similar names and mathematical forms are the Mathisson–Papapetrou equations and Papapetrou–Dixon equations. All three sets of equations describe the same physics.

In theoretical physics, the problem of time is a conceptual conflict between general relativity and quantum mechanics in that quantum mechanics regards the flow of time as universal and absolute, whereas general relativity regards the flow of time as malleable and relative. This problem raises the question of what time really is in a physical sense and whether it is truly a real, distinct phenomenon. It also involves the related question of why time seems to flow in a single direction, despite the fact that no known physical laws at the microscopic level seem to require a single direction.

Manuela Campanelli is a professor of astrophysics of the Rochester Institute of Technology. She also holds the John Vouros endowed professorship at RIT and is the director of its Center for Computational Relativity and Gravitation. Her work focuses on the astrophysics of merging black holes and neutron stars, which are powerful sources of gravitational waves, electromagnetic radiation and relativistic jets. This research is central to the fields of relativistic astrophysics and gravitational-wave astronomy.

References

  1. Cohen, J.M.; Mashhoon, B. (October 1993). "Standard Clocks, Interferometry, and Gravitomagnetism". Physics Letters A. 181 (5): 353–358. Bibcode:1993PhLA..181..353C. doi:10.1016/0375-9601(93)90387-F.
  2. Mashhoon, B.; Gronwald, F.; Theiss, D.S. (February 1999). "On measuring gravitomagnetism via spaceborne clocks: a gravitomagnetic clock effect". Annalen der Physik. 8 (2): 135–152. arXiv: gr-qc/9804008 . Bibcode:1999AnP...511..135M. doi:10.1002/(SICI)1521-3889(199902)8:2<135::AID-ANDP135>3.0.CO;2-N. S2CID   17353038.
  3. Tartaglia, A. (February 2000). "Detection of the gravitomagnetic clock effect". Classical and Quantum Gravity. 17 (4): 783–792. arXiv: gr-qc/9909006 . Bibcode:2000CQGra..17..783T. doi:10.1088/0264-9381/17/4/304. S2CID   9356721.
  4. Tartaglia, A. (September 2000). "Geometric Treatment of the Gravitomagnetic Clock Effect". General Relativity and Gravitation. 32 (9): 1745–1756. arXiv: gr-qc/0001080 . Bibcode:2000GReGr..32.1745T. doi:10.1023/A:1001998505329. S2CID   119383886.
  5. Lichtenegger, H.I.M.; Gronwald, F.; Mashhoon, B. (2000). "On detecting the gravitomagnetic field of the Earth by means of orbiting clocks". Advances in Space Research. 25 (6): 1255–1258. arXiv: gr-qc/9808017 . Bibcode:2000AdSpR..25.1255L. doi:10.1016/S0273-1177(99)00997-7. S2CID   16542540.
  6. Iorio, L. (August 2001). "Satellite Gravitational Orbital Perturbations and the Gravitomagnetic Clock Effect". International Journal of Modern Physics D. 10 (4): 465–476. arXiv: gr-qc/0007014 . Bibcode:2001IJMPD..10..465I. doi:10.1142/S0218271801000925. S2CID   119426253.
  7. Iorio, L. (October 2001). "Satellite non-gravitational orbital perturbations and the detection of the gravitomagnetic clock effect". Classical and Quantum Gravity. 18 (20): 4303–4310. arXiv: gr-qc/0007057 . Bibcode:2001CQGra..18.4303I. doi:10.1088/0264-9381/18/20/309. S2CID   6342400.
  8. Mashhoon, B.; Gronwald, F; Lichtenegger, H.I.M. (2001). "Gravitomagnetism and the Clock Effect". Gyros, Clocks, Interferometers...: Testing Relativistic Gravity in Space. Lecture Notes in Physics. Vol. 562. pp. 83–108. arXiv: gr-qc/9912027 . Bibcode:2001LNP...562...83M. doi:10.1007/3-540-40988-2_5. ISBN   978-3-540-41236-6. S2CID   32411999.
  9. Mashhoon, B.; Iorio, L.; Lichtenegger, H.I.M. (December 2001). "On the gravitomagnetic clock effect". Physics Letters A. 292 (1–2): 49–57. arXiv: gr-qc/0110055 . Bibcode:2001PhLA..292...49M. doi:10.1016/S0375-9601(01)00776-9. S2CID   14981533.
  10. Iorio, L.; Lichtenegger, H.I.M.; Mashhoon, B. (January 2002). "An alternative derivation of the gravitomagnetic clock effect". Classical and Quantum Gravity. 19 (1): 39–49. arXiv: gr-qc/0107002 . Bibcode:2002CQGra..19...39I. doi:10.1088/0264-9381/19/1/303. S2CID   5941537.
  11. Iorio, L.; Lichtenegger, H.I.M. (February 2005). "On the possibility of measuring the gravitomagnetic clock effect in an Earth space-based experiment". Classical and Quantum Gravity. 22 (1): 119–132. arXiv: gr-qc/0210030 . Bibcode:2005CQGra..22..119I. doi:10.1088/0264-9381/22/1/008. S2CID   118903460.
  12. Lichtenegger, H.I.M.; Iorio, L.; Mashhoon, B. (December 2006). "The gravitomagnetic clock effect and its possible observation". Annalen der Physik. 15 (12): 868–876. arXiv: gr-qc/0211108 . Bibcode:2006AnP...518..868L. doi:10.1002/andp.200610214. S2CID   9087843.