Greenhouse Item

Last updated
Greenhouse Item
GreenhoouseItem.gif
Information
CountryUnited States
Test series Operation Greenhouse
Test site Enewetak
DateMay 25, 1951
Test type Atmospheric
Yield45.5 kt
Test chronology

Greenhouse-Item was an American nuclear test conducted on May 25, 1951, as part of Operation Greenhouse at the Pacific Proving Ground, specifically on the island of Engebi in the Eniwetok Atoll in the Central Pacific Ocean. This test explosion was the first test of a boosted fission weapon, the first instance of artificial thermonuclear fusion, and the first weaponization of fusion. [1]

Contents

Description

In this test deuterium-tritium (D-T) gas was injected into the enriched uranium core of a nuclear fission bomb. The extreme heat of the fissioning bomb produced thermonuclear fusion reactions within the D-T gas, but not enough of them to be considered a full nuclear fusion bomb. This fusion reaction released a large number of free neutrons, which greatly increased the efficiency of the nuclear fission reaction. The explosive yield of this bomb was 45.5  kilotons, about twice the yield of the unboosted bomb.

The device was code-named "Booster" in its development stages, a name for the mechanism coined by Edward Teller in September 1947. Planning for it had begun in the late 1940s. According to the researcher Chuck Hansen, it was mentioned in official U.S. Atomic Energy Commission documents as early as 1947. The main problems in development were making modifications to the fission core to accept the gas correctly without reducing its own efficiency. The 1951 test was primarily to test the nuclear principles involved, and to gain research data, and it was not considered a design for a weaponizable device. Even as late as 1954, no boosted weapon had entered into the nuclear-weapons stockpile, and the only use for the Greenhouse Item nuclear test had been for its research results.

The "Booster" device was detonated at 6:17 am on May 25, 1951, from a 200-foot-tall (61 m) shot tower on the island of Engebi in the Enewetok Atoll, and its fusion fuel was injected by means of a cryogenic pump at the base of the tower.

Related Research Articles

<span class="mw-page-title-main">Operation Ivy</span> Series of 1950s US nuclear tests

Operation Ivy was the eighth series of American nuclear tests, coming after Tumbler-Snapper and before Upshot–Knothole. The two explosions were staged in late 1952 at Enewetak Atoll in the Pacific Proving Ground in the Marshall Islands.

<span class="mw-page-title-main">Operation Castle</span> Series of 1950s US nuclear tests

Operation Castle was a United States series of high-yield (high-energy) nuclear tests by Joint Task Force 7 (JTF-7) at Bikini Atoll beginning in March 1954. It followed Operation Upshot–Knothole and preceded Operation Teapot.

<span class="mw-page-title-main">Operation Greenhouse</span> Series of 1950s US nuclear tests

Operation Greenhouse was the fifth American nuclear test series, the second conducted in 1951 and the first to test principles that would lead to developing thermonuclear weapons. Conducted at the new Pacific Proving Ground, on islands of the Enewetak Atoll, it mounted the devices on large steel towers to simulate air bursts. This series of nuclear weapons tests was preceded by Operation Ranger and succeeded by Operation Buster-Jangle.

<span class="mw-page-title-main">Ivy King</span> Largest pure-fission US nuclear bomb test

Ivy King was the largest pure-fission nuclear bomb ever tested by the United States. The bomb was tested during the Truman administration as part of Operation Ivy. This series of tests involved the development of very powerful nuclear weapons in response to the nuclear weapons program of the Soviet Union.

<span class="mw-page-title-main">Castle Bravo</span> 1954 U.S. thermonuclear weapon test in the Marshall Islands

Castle Bravo was the first in a series of high-yield thermonuclear weapon design tests conducted by the United States at Bikini Atoll, Marshall Islands, as part of Operation Castle. Detonated on March 1, 1954, the device remains the most powerful nuclear device ever detonated by the United States and the first lithium deuteride-fueled thermonuclear weapon tested using the Teller-Ulam design. Castle Bravo's yield was 15 megatons of TNT [Mt] (63 PJ), 2.5 times the predicted 6 Mt (25 PJ), due to unforeseen additional reactions involving lithium-7, which led to radioactive contamination in the surrounding area.

<span class="mw-page-title-main">Ivy Mike</span> 1952 American nuclear test

Ivy Mike was the codename given to the first full-scale test of a thermonuclear device, in which part of the explosive yield comes from nuclear fusion. Ivy Mike was detonated on November 1, 1952, by the United States on the island of Elugelab in Enewetak Atoll, in the now independent island nation of the Marshall Islands, as part of Operation Ivy. It was the first full test of the Teller–Ulam design, a staged fusion device.

Variable yield, or dial-a-yield, is an option available on most modern nuclear weapons. It allows the operator to specify a weapon's yield, or explosive power, allowing a single design to be used in different situations. For example, the Mod-10 B61 bomb had selectable explosive yields of 0.3, 5, 10 or 80 kilotons, depending on how the ground crew set a dial inside the casing when it was loaded onto an aircraft.

<span class="mw-page-title-main">Boosted fission weapon</span> Type of nuclear weapon

A boosted fission weapon usually refers to a type of nuclear bomb that uses a small amount of fusion fuel to increase the rate, and thus yield, of a fission reaction. The neutrons released by the fusion reactions add to the neutrons released due to fission, allowing for more neutron-induced fission reactions to take place. The rate of fission is thereby greatly increased such that much more of the fissile material is able to undergo fission before the core explosively disassembles. The fusion process itself adds only a small amount of energy to the process, perhaps 1%.

<span class="mw-page-title-main">Castle Yankee</span> 1954 nuclear test of thermonuclear bomb by USA

Castle Yankee was the code name given to one of the tests in the Operation Castle series of American tests of thermonuclear bombs. It was originally intended as a test of a TX-16/EC-16 Jughead bomb, but the design became obsolete after the Castle Bravo test was successful. The test device was replaced with a TX-24/EC-24 Runt II bomb which was detonated on May 5, 1954, at Bikini Atoll. It released energy equivalent to 13.5 megatons of TNT, the second-largest yield ever in a U.S. fusion weapon test.

<span class="mw-page-title-main">Castle Romeo</span> Codename for one of the first thermonuclear bomb tests

Castle Romeo was the code name given to one of the tests in the Operation Castle series of U.S. nuclear tests. It was the first test of the TX-17 thermonuclear weapon, the first deployed thermonuclear bomb.

<span class="mw-page-title-main">Castle Union</span> Hydrogen bomb test

Castle Union was the code name given to one of the tests in the Operation Castle series of United States nuclear tests. It was the first test of the TX-14 thermonuclear weapon, one of the first deployed U.S. thermonuclear bombs.

<span class="mw-page-title-main">Thermonuclear weapon</span> 2-stage nuclear weapon

A thermonuclear weapon, fusion weapon or hydrogen bomb (H bomb) is a second-generation nuclear weapon design. Its greater sophistication affords it vastly greater destructive power than first-generation nuclear bombs, a more compact size, a lower mass, or a combination of these benefits. Characteristics of nuclear fusion reactions make possible the use of non-fissile depleted uranium as the weapon's main fuel, thus allowing more efficient use of scarce fissile material such as uranium-235 or plutonium-239. The first full-scale thermonuclear test was carried out by the United States in 1952, and the concept has since been employed by most of the world's nuclear powers in the design of their weapons.

<span class="mw-page-title-main">History of the Teller–Ulam design</span> History of technical design of modern hydrogen bombs

The Teller–Ulam design is a technical concept behind modern thermonuclear weapons, also known as hydrogen bombs. The design – the details of which are military secrets and known to only a handful of major nations – is believed to be used in virtually all modern nuclear weapons that make up the arsenals of the major nuclear powers.

According to researcher Chuck Hansen, the W34 Python was a gas-boosted fission primary used in several designs of American thermonuclear weapons.

<span class="mw-page-title-main">Operation Redwing</span> Series of 1950s US nuclear tests

Operation Redwing was a United States series of 17 nuclear test detonations from May to July 1956. They were conducted at Bikini and Enewetak atolls by Joint Task Force 7 (JTF7). The entire operation followed Project 56 and preceded Project 57. The primary intention was to test new, second-generation thermonuclear weapons. Also tested were fission devices intended to be used as primaries for thermonuclear weapons, and small tactical weapons for air defense. Redwing demonstrated the first United States airdrop of a deliverable hydrogen bomb during test Cherokee. Because the yields for many tests at Operation Castle in 1954 were dramatically higher than predictions, Redwing was conducted using an "energy budget": There were limits to the total amount of energy released, and the amount of fission yield was also strictly controlled. Fission, primarily "fast" fission of the natural uranium tamper surrounding the fusion capsule, greatly increases the yield of thermonuclear devices, and constitutes the great majority of the fallout, as nuclear fusion is a relatively clean reaction.

RACER IV was a component of some of the first hydrogen bombs made by the United States during the 1950s. The RACER was developed in 1953 at Los Alamos National Laboratory.

<span class="mw-page-title-main">Uranium hydride bomb</span> Type of atomic bomb

The uranium hydride bomb was a variant design of the atomic bomb first suggested by Robert Oppenheimer in 1939 and advocated and tested by Edward Teller. It used deuterium, an isotope of hydrogen, as a neutron moderator in a uranium-deuterium ceramic compact. Unlike all other fission-bomb types, the concept relies on a chain reaction of slow nuclear fission. Bomb efficiency was harmed by the slowing of neutrons since the latter delays the reaction, as delineated by Rob Serber in his 1992 extension of the original Los Alamos Primer.

<span class="mw-page-title-main">Fizzle (nuclear explosion)</span> Nuclear explosion with much less than expected yield

A fizzle occurs when the detonation of a device for creating a nuclear explosion grossly fails to meet its expected yield. The bombs still detonate, but the detonation is much weaker than anticipated. The cause(s) for the failure might be linked to improper design, poor construction, or lack of expertise. All countries that have had a nuclear weapons testing program have experienced some fizzles. A fizzle can spread radioactive material throughout the surrounding area, involve a partial fission reaction of the fissile material, or both. For practical purposes, a fizzle can still have considerable explosive yield when compared to conventional weapons.

Sundial was the codename of one of two massive bombs planned for testing by the University of California Radiation Laboratory, Livermore Branch as part of a classified American weapons project in the early 1950s. Announced by Edward Teller at a meeting of the General Advisory Committee of the Atomic Energy Commission, it was intended to have a yield of 10 gigatons of TNT, while its counterpart, Gnomon, was intended to have a yield of 1 gigaton.

References

  1. Tarter, C.B. (2018). The American Lab: An Insider’s History of the Lawrence Livermore National Laboratory. Johns Hopkins Nuclear History and Contemporary Affairs. Johns Hopkins University Press. p. 5. ISBN   978-1-4214-2531-3 . Retrieved 2024-11-12.