Discovery | |
---|---|
Discovered by | Lopez-Morales et al. |
Discovery site | Las Campanas Observatory |
Discovery date | September 5, 2008 |
Doppler spectroscopy | |
Orbital characteristics | |
Apastron | 0.961 AU (143,800,000 km) |
Periastron | 0.233 AU (34,900,000 km) |
0.597+0.2 −0.17 [1] AU | |
Eccentricity | 0.61 ± 0.03 |
163.94 ± 0.01 d 0.44884 y | |
Average orbital speed | 39.8 |
3045.3 ± 0.1 [1] | |
265 ± 2 [1] | |
Star | HD 154672 |
Physical characteristics | |
Mass | 4.96+0.4 −0.35 [1] MJ |
Temperature | 300–600 K (27–327 °C; 80–620 °F) |
HD 154672 b is an extrasolar planet located approximately 210 light-years away [2] in the constellation of Ara, orbiting the metal-rich and aged star HD 154672. This planet has a minimum mass five times that of Jupiter and orbits at about 60% the distance between the Earth to the Sun. Its orbit is very elliptical, which causes temperatures on the planet to vary significantly as it proceeds along its orbit. This planet was discovered in Las Campanas Observatory on September 5, 2008 using the radial velocity method (Doppler spectroscopy). Along with HD 205739 b, the planets were the first to be discovered by the N2K Consortium using the Magellan Telescopes.
Astronomers hoped to implement a survey called the N2K Consortium, a collaboration which uses Doppler spectroscopy to find radial velocity measurements of stars that hadn't been previously surveyed. The project searched particularly for gas giants with short orbits around metal-rich stars to find how the metallicity of the star and the mass of the planet are related. [3]
Radial velocity observations had been taken by the N2K program using the Magellan Telescopes' Magellan Inamori Kyocera Echelle spectrograph (MIKE) at Las Campanas Observatory in Chile since 2004. Based on these observations, the stars HD 154672 and HD 205739 were among those flagged as potential planetary host stars. The two stars were identified originally as having short-orbit hot Jupiter planets, but 3.5 years of additional observations revealed that the planetary candidates' orbits were far longer than initially anticipated. HD 154672 b's discovery was reported in the Astronomical Journal by the American Astronomical Society, appearing in the journal on October 7, 2008 alongside the planet HD 205739 b. The two planets were the first to be discovered by the N2K program that worked out of the Magellan telescopes. [3]
HD 154672 b was later observed by a different team of astronomers investigating the role of metallicity, or the amount of metal present in a star, in the formation of planets. Six radial velocity measurements of the host star, collected using the HARPS instrument at Chile's La Silla Observatory. The team used the radial velocity data to refine the parameters of HD 154672 b from what was published in its discovery paper a year earlier. [4]
HD 154672 is a G-type star like the Sun. The star has a mass that is 1.06 times that of the Sun, and a radius 1.27 times the solar radius. The effective temperature, or the temperature it would emit if it were a black body, is 5714 K, slightly cooler than that of the Sun. However, with an [Fe/H] = 0.26 and an age of 9.28 billion years, HD 154672 has 182% more iron than the Sun, and is over two times older than the Sun. [1] Based on its spectrum, HD 154672 is not a very active star. [3]
The apparent magnitude (v) of HD 154672 is 8.22, which means that it is not visible to the naked eye. [1] It is slightly dimmer than Neptune, which has an apparent magnitude of 7.78 at its brightest. [5]
HD 154672 b is a closely orbiting planet that is larger than Jupiter. Its mass was estimated as 5.02 that of Jupiter. HD 154672 b also orbits its host star at a distance of 0.6 AU every 163.91 days. [1] Earth, in comparison, orbits the Sun at a distance of 1 AU every 365.25 days. [6] However, HD 154672 b has an orbital eccentricity of 0.61, which indicates a very elliptical orbit. [1] Because HD 154672 b has such an eccentric orbit, the equilibrium temperature of the planet varies between 300 K and 600 K, which is significantly higher than that of Jupiter (124 K [6] ). If liquid water is present in the atmosphere of HD 154672 b, it could possibly convert between gaseous and liquid phases as the planet moves along its orbit. [3]
The high eccentricity of the planet's orbit suggests that either the Kozai mechanism (there is an exchange between the inclination of a planet and its eccentricity) is at work, or that the planet's orbit was distorted by the unstable orbit of other planets that used to be part of the HD 154672 system. [3]
HD 154672 b had, at the time of its 2008 discovery, an orbital period larger than 90% of all discovered planets. It was the seventh planet known to have an eccentricity over 0.6 and an orbit shorter than 300 days. [3]
TrES-1b is an extrasolar planet approximately 523 light-years away in the constellation of Lyra. The planet's mass and radius indicate that it is a Jovian planet with a similar bulk composition to Jupiter. Unlike Jupiter, but similar to many other planets detected around other stars, TrES-1 is located very close to its star, and belongs to the class of planets known as hot Jupiters. The planet was discovered orbiting around GSC 02652-01324.
HD 28185 b is an extrasolar planet 128 light-years away from Earth in the constellation of Eridanus. The planet was discovered orbiting the Sun-like star HD 28185 in April 2001 as a part of the CORALIE survey for southern extrasolar planets, and its existence was independently confirmed by the Magellan Planet Search Survey in 2008. HD 28185 b orbits its sun in a circular orbit that is at the inner edge of its star's habitable zone.
HD 80606 and HD 80607 are two stars comprising a binary star system. They are approximately 217 light-years away in the constellation of Ursa Major. Both stars orbit each other at an average distance of 1,200 astronomical units. The binary system is listed as Struve 1341 in the Struve Catalogue of Double Stars; however, this designation is not in wide use and the system is usually referred to by the HD designations of its constituent stars. An extrasolar planet has been confirmed to orbit HD 80606 in a highly elliptical orbit.
HAT-P-1b is an extrasolar planet orbiting the Sun-like star HAT-P-1, also known as ADS 16402 B. HAT-P-1 is the dimmer component of the ADS 16402 binary star system. It is located roughly 521 light years away from Earth in the constellation Lacerta. HAT-P-1b is among the least dense of any of the known extrasolar planets.
HD 155358 is a low metallicity yellow dwarf star approximately 43 pc away in the constellation Hercules. This star is known to be orbited by two extrasolar planets.
Epsilon Eridani b, also known as AEgir [sic], is an exoplanet approximately 10.5 light-years away orbiting the star Epsilon Eridani, in the constellation of Eridanus. The planet was discovered in 2000, and as of 2023 remains the only confirmed planet in its planetary system. It orbits at around 3.5 AU with a period of around 7.6 years, and has a mass around 0.6 times that of Jupiter. As of 2023, both the Extrasolar Planets Encyclopaedia and the NASA Exoplanet Archive list the planet as 'confirmed'.
HD 8574 b is an extrasolar planet discovered in 2001 by a team of European astronomers using Doppler spectroscopy as part of the ELODIE Planet Search Survey, and was published in a paper with five other planets. HD 8574 b is in the orbit of host star HD 8574. The planet is at most two times the mass of Jupiter, orbiting every 227 days at three quarters of the distance between the Earth and Sun. HD 8574 b has a very elliptical orbit, far more than that of Jupiter.
HD 80606 b is an eccentric hot Jupiter 217 light-years from the Sun in the constellation of Ursa Major. HD 80606 b was discovered orbiting the star HD 80606 in April 2001 by a team led by Michel Mayor and Didier Queloz. With a mass 4 times that of Jupiter, it is a gas giant. Because the planet transits the host star its radius can be determined using the transit method, and was found to be about the same as Jupiter's. Its density is slightly less than Earth's. It has an extremely eccentric orbit like a comet, with its orbit taking it very close to its star and then back out very far away from it every 111 days.
HD 154672 is a yellow subgiant. It is about 65 parsecs away from the Sun that is larger than, but of a similar mass to, the Sun. However, HD 154672 is much older. The star is very metal-rich, which is one of the reasons why it was targeted for a planet search by the N2K Consortium, which discovered the gas giant planet HD 154672 b using Doppler Spectroscopy; the discovery was reported in October 2008. The N2K collaboration chose HD 154672 primarily because it aimed to discover the correlation between a star's metallicity and the mass of orbiting planets.
HD 205739 b is an extrasolar planet located approximately 350 light-years away.
HD 153950 b, also known as Trimobe, is an extrasolar planet located approximately 162 light-years away. This planet was discovered on October 26, 2008 by Moutou et al. using the HARPS spectrograph on ESO's 3.6 meter telescope installed at La Silla Observatory in Atacama desert, Chile.
HD 171238 b is an extrasolar planet which orbits the G-type main sequence star HD 171238, located approximately 164 light years away in the constellation Sagittarius. This planet has minimum mass two and a half times greater than Jupiter and orbits two times closer to the star than Jupiter to the Sun. However this planet orbits in an eccentric orbit, about two astronomical units difference between periastron and apastron distances. This planet was discovered in August 2009 by using the radial velocity method in La Silla Observatory, Chile.
The Magellan Planet Search Program is a ground-based search for extrasolar planets that makes use of the radial velocity method. It began gathering data in December 2002 using the MIKE echelle spectrograph mounted on the 6.5m Magellan II "Clay" telescope located within the Las Campanas Observatory in Chile. In 2010, the program began using the newly commissioned Planet Finder Spectrograph (PFS), an instrument purpose-built for precise radial velocity measurement.
The N2K Consortium is a collaborative multinational effort by American, Chilean and Japanese astronomers to find additional extrasolar planets around stars that are not already being surveyed. The N2K is shorthand for the set of roughly 2,000 of the nearest and most luminous main sequence stars that were selected to be newly surveyed. Target stars have a B - V color index value between 0.4 and 1.2, a visual magnitude brighter than 10.5, and a distance of less than 110 pc from the Sun. They were selected based upon their high metallicity, which is the abundance of elements other than hydrogen and helium.
GJ 3634 b is a super-Earth exoplanet in the orbit of the nearby red dwarf GJ 3634 at approximately 64.5 light-years in constellation Hydra. The planet is approximately eight times the mass of Earth, and orbits its star every two and a half days at a distance of 0.0287 AU. The planet was the first to be discovered by a group of astronomers searching for exoplanets in the orbit of very-low-mass stars after the team reorganized their strategy, choosing to search for targets that they could also confirm using the transit method. However, a transit event associated with GJ 3634 b was not detected. The planet's discovery was published in Astronomy and Astrophysics on February 8, 2011.
WASP-24b is a Hot Jupiter detected in the orbit of the F-type star WASP-24. The planet is approximately the same size and mass of Jupiter, but it orbits at approximately 4% of the mean distance between the Earth and the Sun every two days. WASP-24b was observed by SuperWASP starting in 2008; after two years of observations, follow-ups led to the collection of the information that led to the planet's discovery.
WASP-44b is a closely orbiting Jupiter-sized planet found in the orbit of the sunlike star WASP-44 by the SuperWASP program, which searches for transiting planets that cross in front of their host stars as seen from Earth. After follow-up observations using radial velocity, the planet was confirmed. Use of another telescope at the same observatory detected WASP-44 transiting its star. The planet completes an orbit around its star every two and a half days, and orbits at roughly 0.03 AU from its host star. WASP-44b's discovery was reported by the Royal Astronomical Society in May 2011.
WASP-44 is a G-type star in the constellation Cetus that is orbited by the Jupiter-size planet WASP-44b. The star is slightly less massive and slightly smaller than the Sun; it is also slightly cooler, but is more metal-rich. The star was observed by SuperWASP, an organization searching for exoplanets, starting in 2009; manual follow-up observations used WASP-44's spectrum and measurements of its radial velocity led to the discovery of the transiting planet WASP-44b. The planet and its star were presented along with WASP-45b and WASP-46b on May 17, 2011 by a team of scientists testing the idea that hot Jupiters tend to have circular orbits, an assumption that is made when the orbital eccentricity of such planets are not well-constrained.
HD 240237 b is a super-Jupiter exoplanet orbiting the K-type giant star HD 240237 about 4,900 light-years (1,500 parsecs, or nearly 4.6×1016 km) away from Earth in the constellation Cassiopeia. It orbits outside of the habitable zone of its star at a distance of 1.9 AU. The exoplanet was found by using the radial velocity method, from radial-velocity measurements via observation of Doppler shifts in the spectrum of the planet's parent star. The planet has a mildly eccentric orbit.
Beta Pictoris c is the second exoplanet discovered orbiting the young star Beta Pictoris, located approximately 63 light-years away from Earth in the constellation of Pictor. Its mass is around nine times that of Jupiter, and it orbits at around 2.7 astronomical units (AU) from Beta Pictoris, about 3.5 times closer to its parent star than Beta Pictoris b. It has an orbital period of 1,200 days. The orbit of Beta Pictoris c is moderately eccentric, with an eccentricity of 0.24.