Heat transfer physics

Last updated

Heat transfer physics describes the kinetics of energy storage, transport, and energy transformation by principal energy carriers: phonons (lattice vibration waves), electrons, fluid particles, and photons. [1] [2] [3] [4] [5] Heat is energy stored in temperature-dependent motion of particles including electrons, atomic nuclei, individual atoms, and molecules. Heat is transferred to and from matter by the principal energy carriers. The state of energy stored within matter, or transported by the carriers, is described by a combination of classical and quantum statistical mechanics. The energy is different made (converted) among various carriers. The heat transfer processes (or kinetics) are governed by the rates at which various related physical phenomena occur, such as (for example) the rate of particle collisions in classical mechanics. These various states and kinetics determine the heat transfer, i.e., the net rate of energy storage or transport. Governing these process from the atomic level (atom or molecule length scale) to macroscale are the laws of thermodynamics, including conservation of energy.

Contents

Introduction

Variation of equilibrium particle distribution function with respect to energy for different energy carriers. Equilibrium Particle distribution function.jpg
Variation of equilibrium particle distribution function with respect to energy for different energy carriers.
Kinetics of atomic-level energy transport and transition interaction Kinetics of atomic-level energy transport and transition interaction, Interaction times spectrum1.jpg
Kinetics of atomic-level energy transport and transition interaction
Length-time scale regimes for ab initio, MD, Boltzmann transport, and macroscopic treatments of heat transfer. Time-length scale regimes.jpg
Length-time scale regimes for ab initio, MD, Boltzmann transport, and macroscopic treatments of heat transfer.

Heat is thermal energy associated with temperature-dependent motion of particles. The macroscopic energy equation for infinitesimal volume used in heat transfer analysis is [6]

where q is heat flux vector, ρcp(∂T/∂t) is temporal change of internal energy (ρ is density, cp is specific heat capacity at constant pressure, T is temperature and t is time), and is the energy conversion to and from thermal energy (i and j are for principal energy carriers). So, the terms represent energy transport, storage and transformation. Heat flux vector q is composed of three macroscopic fundamental modes, which are conduction (qk = −kT, k: thermal conductivity), convection (qu = ρcpuT, u: velocity), and radiation (, ω: angular frequency, θ: polar angle, Iph,ω: spectral, directional radiation intensity, s: unit vector), i.e., q = qk + qu + qr.

Once states and kinetics of the energy conversion and thermophysical properties are known, the fate of heat transfer is described by the above equation. These atomic-level mechanisms and kinetics are addressed in heat transfer physics. The microscopic thermal energy is stored, transported, and transformed by the principal energy carriers: phonons (p), electrons (e), fluid particles (f), and photons (ph). [7]

Length and time scales

Thermophysical properties of matter and the kinetics of interaction and energy exchange among the principal carriers are based on the atomic-level configuration and interaction. [1] Transport properties such as thermal conductivity are calculated from these atomic-level properties using classical and quantum physics. [5] [8] Quantum states of principal carriers (e.g.. momentum, energy) are derived from the Schrödinger equation (called first principle or ab initio) and the interaction rates (for kinetics) are calculated using the quantum states and the quantum perturbation theory (formulated as the Fermi golden rule). [9] Variety of ab initio (Latin for from the beginning) solvers (software) exist (e.g., ABINIT, CASTEP, Gaussian, Q-Chem, Quantum ESPRESSO, SIESTA, VASP, WIEN2k). Electrons in the inner shells (core) are not involved in heat transfer, and calculations are greatly reduced by proper approximations about the inner-shells electrons. [10]

The quantum treatments, including equilibrium and nonequilibrium ab initio molecular dynamics (MD), involving larger lengths and times are limited by the computation resources, so various alternate treatments with simplifying assumptions have been used and kinetics. [11] In classical (Newtonian) MD, the motion of atom or molecule (particles) is based on the empirical or effective interaction potentials, which in turn can be based on curve-fit of ab initio calculations or curve-fit to thermophysical properties. From the ensembles of simulated particles, static or dynamics thermal properties or scattering rates are derived. [12] [13]

At yet larger length scales (mesoscale, involving many mean free paths), the Boltzmann transport equation (BTE) which is based on the classical Hamiltonian-statistical mechanics is applied. BTE considers particle states in terms of position and momentum vectors (x, p) and this is represented as the state occupation probability. The occupation has equilibrium distributions (the known boson, fermion, and Maxwell–Boltzmann particles) and transport of energy (heat) is due to nonequilibrium (cause by a driving force or potential). Central to the transport is the role of scattering which turn the distribution toward equilibrium. The scattering is presented by the relations time or the mean free path. The relaxation time (or its inverse which is the interaction rate) is found from other calculations (ab initio or MD) or empirically. BTE can be numerically solved with Monte Carlo method, etc. [14]

Depending on the length and time scale, the proper level of treatment (ab initio, MD, or BTE) is selected. Heat transfer physics analyses may involve multiple scales (e.g., BTE using interaction rate from ab initio or classical MD) with states and kinetic related to thermal energy storage, transport and transformation.

So, heat transfer physics covers the four principal energy carries and their kinetics from classical and quantum mechanical perspectives. This enables multiscale (ab initio, MD, BTE and macroscale) analyses, including low-dimensionality and size effects. [2]

Phonon

Phonon (quantized lattice vibration wave) is a central thermal energy carrier contributing to heat capacity (sensible heat storage) and conductive heat transfer in condensed phase, and plays a very important role in thermal energy conversion. Its transport properties are represented by the phonon conductivity tensor Kp (W/m-K, from the Fourier law qk,p = -Kp⋅∇ T) for bulk materials, and the phonon boundary resistance ARp,b [K/(W/m2)] for solid interfaces, where A is the interface area. The phonon specific heat capacity cv,p (J/kg-K) includes the quantum effect. The thermal energy conversion rate involving phonon is included in . Heat transfer physics describes and predicts, cv,p, Kp, Rp,b (or conductance Gp,b) and , based on atomic-level properties.

For an equilibrium potential ⟨φo of a system with N atoms, the total potential ⟨φ⟩ is found by a Taylor series expansion at the equilibrium and this can be approximated by the second derivatives (the harmonic approximation) as

where di is the displacement vector of atom i, and Γ is the spring (or force) constant as the second-order derivatives of the potential. The equation of motion for the lattice vibration in terms of the displacement of atoms [d(jl,t): displacement vector of the j-th atom in the l-th unit cell at time t] is

where m is the atomic mass and Γ is the force constant tensor. The atomic displacement is the summation over the normal modes [sα: unit vector of mode α, ωp: angular frequency of wave, and κp: wave vector]. Using this plane-wave displacement, the equation of motion becomes the eigenvalue equation [15] [16]

where M is the diagonal mass matrix and D is the harmonic dynamical matrix. Solving this eigenvalue equation gives the relation between the angular frequency ωp and the wave vector κp, and this relation is called the phonon dispersion relation. Thus, the phonon dispersion relation is determined by matrices M and D, which depend on the atomic structure and the strength of interaction among constituent atoms (the stronger the interaction and the lighter the atoms, the higher is the phonon frequency and the larger is the slope p/dκp). The Hamiltonian of phonon system with the harmonic approximation is [15] [17] [18]

where Dij is the dynamical matrix element between atoms i and j, and di (dj) is the displacement of i (j) atom, and p is momentum. From this and the solution to dispersion relation, the phonon annihilation operator for the quantum treatment is defined as

where N is the number of normal modes divided by α and ħ is the reduced Planck constant. The creation operator is the adjoint of the annihilation operator,

The Hamiltonian in terms of bκ,α and bκ,α is Hp = Σκ,αħωp,α[bκ,αbκ,α + 1/2] and bκ,αbκ,α is the phonon number operator. The energy of quantum-harmonic oscillator is Ep = Σκ,α [fp(κ,α) + 1/2]ħωp,α(κp), and thus the quantum of phonon energy ħωp.

The phonon dispersion relation gives all possible phonon modes within the Brillouin zone (zone within the primitive cell in reciprocal space), and the phonon density of states Dp (the number density of possible phonon modes). The phonon group velocity up,g is the slope of the dispersion curve, p/dκp. Since phonon is a boson particle, its occupancy follows the Bose–Einstein distribution {fpo = [exp(ħωp/kBT)-1]−1, kB: Boltzmann constant}. Using the phonon density of states and this occupancy distribution, the phonon energy is Ep(T) = Dp(ωp)fp(ωp,T)ħωpp, and the phonon density is np(T) = Dp(ωp)fp(ωp,T)p. Phonon heat capacity cv,p (in solid cv,p = cp,p, cv,p : constant-volume heat capacity, cp,p: constant-pressure heat capacity) is the temperature derivatives of phonon energy for the Debye model (linear dispersion model), is [19]

where TD is the Debye temperature, m is atomic mass, and n is the atomic number density (number density of phonon modes for the crystal 3n). This gives the Debye T3 law at low temperature and Dulong-Petit law at high temperatures.

From the kinetic theory of gases, [20] thermal conductivity of principal carrier i (p, e, f and ph) is

where ni is the carrier density and the heat capacity is per carrier, ui is the carrier speed and λi is the mean free path (distance traveled by carrier before an scattering event). Thus, the larger the carrier density, heat capacity and speed, and the less significant the scattering, the higher is the conductivity. For phonon λp represents the interaction (scattering) kinetics of phonons and is related to the scattering relaxation time τp or rate (= 1/τp) through λp= upτp. Phonons interact with other phonons, and with electrons, boundaries, impurities, etc., and λp combines these interaction mechanisms through the Matthiessen rule. At low temperatures, scattering by boundaries is dominant and with increase in temperature the interaction rate with impurities, electron and other phonons become important, and finally the phonon-phonon scattering dominants for T > 0.2TD. The interaction rates are reviewed in [21] and includes quantum perturbation theory and MD.

A number of conductivity models are available with approximations regarding the dispersion and λp. [17] [19] [21] [22] [23] [24] [25] Using the single-mode relaxation time approximation (∂fp/∂t|s = −fp/τp) and the gas kinetic theory, Callaway phonon (lattice) conductivity model as [21] [26]

With the Debye model (a single group velocity up,g, and a specific heat capacity calculated above), this becomes

where a is the lattice constant a = n−1/3 for a cubic lattice, and n is the atomic number density. Slack phonon conductivity model mainly considering acoustic phonon scattering (three-phonon interaction) is given as [27] [28]

where M is the mean atomic weight of the atoms in the primitive cell, Va=1/n is the average volume per atom, TD,∞ is the high-temperature Debye temperature, T is the temperature, No is the number of atoms in the primitive cell, and ⟨γ2G⟩ is the mode-averaged square of the Grüneisen constant or parameter at high temperatures. This model is widely tested with pure nonmetallic crystals, and the overall agreement is good, even for complex crystals.

Based on the kinetics and atomic structure consideration, a material with high crystalline and strong interactions, composed of light atoms (such as diamond and graphene) is expected to have large phonon conductivity. Solids with more than one atom in the smallest unit cell representing the lattice have two types of phonons, i.e., acoustic and optical. (Acoustic phonons are in-phase movements of atoms about their equilibrium positions, while optical phonons are out-of-phase movement of adjacent atoms in the lattice.) Optical phonons have higher energies (frequencies), but make smaller contribution to conduction heat transfer, because of their smaller group velocity and occupancy.

Phonon transport across hetero-structure boundaries (represented with Rp,b, phonon boundary resistance) according to the boundary scattering approximations are modeled as acoustic and diffuse mismatch models. [29] Larger phonon transmission (small Rp,b) occurs at boundaries where material pairs have similar phonon properties (up, Dp, etc.), and in contract large Rp,b occurs when some material is softer (lower cut-off phonon frequency) than the other.

Electron

Quantum electron energy states for electron are found using the electron quantum Hamiltonian, which is generally composed of kinetic (-ħ22/2me) and potential energy terms (φe). Atomic orbital, a mathematical function describing the wave-like behavior of either an electron or a pair of electrons in an atom, can be found from the Schrödinger equation with this electron Hamiltonian. Hydrogen-like atoms (a nucleus and an electron) allow for closed-form solution to Schrödinger equation with the electrostatic potential (the Coulomb law). The Schrödinger equation of atoms or atomic ions with more than one electron has not been solved analytically, because of the Coulomb interactions among electrons. Thus, numerical techniques are used, and an electron configuration is approximated as product of simpler hydrogen-like atomic orbitals (isolate electron orbitals). Molecules with multiple atoms (nuclei and their electrons) have molecular orbital (MO, a mathematical function for the wave-like behavior of an electron in a molecule), and are obtained from simplified solution techniques such as linear combination of atomic orbitals (LCAO). The molecular orbital is used to predict chemical and physical properties, and the difference between highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) is a measure of excitability of the molecules.

In a crystal structure of metallic solids, the free electron model (zero potential, φe = 0) for the behavior of valence electrons is used. However, in a periodic lattice (crystal), there is periodic crystal potential, so the electron Hamiltonian becomes [19]

where me is the electron mass, and the periodic potential is expressed as φc (x) = Σgφgexp[i(gx)] (g: reciprocal lattice vector). The time-independent Schrödinger equation with this Hamiltonian is given as (the eigenvalue equation)

where the eigenfunction ψe,κ is the electron wave function, and eigenvalue Ee(κe), is the electron energy (κe: electron wavevector). The relation between wavevector, κe and energy Ee provides the electronic band structure. In practice, a lattice as many-body systems includes interactions between electrons and nuclei in potential, but this calculation can be too intricate. Thus, many approximate techniques have been suggested and one of them is density functional theory (DFT), uses functionals of the spatially dependent electron density instead of full interactions. DFT is widely used in ab initio software (ABINIT, CASTEP, Quantum ESPRESSO, SIESTA, VASP, WIEN2k, etc.). The electron specific heat is based on the energy states and occupancy distribution (the Fermi–Dirac statistics). In general, the heat capacity of electron is small except at very high temperature when they are in thermal equilibrium with phonons (lattice). Electrons contribute to heat conduction (in addition to charge carrying) in solid, especially in metals. Thermal conductivity tensor in solid is the sum of electric and phonon thermal conductivity tensors K = Ke + Kp.

Electrons are affected by two thermodynamic forces [from the charge, ∇(EF/ec) where EF is the Fermi level and ec is the electron charge and temperature gradient, ∇(1/T)] because they carry both charge and thermal energy, and thus electric current je and heat flow q are described with the thermoelectric tensors (Aee, Aet, Ate, and Att) from the Onsager reciprocal relations [30] as

Converting these equations to have je equation in terms of electric field ee and ∇T and q equation with je and ∇T, (using scalar coefficients for isotropic transport, αee, αet, αte, and αtt instead of Aee, Aet, Ate, and Att)

Electrical conductivity/resistivity σe−1m−1)/ ρe (Ω-m), electric thermal conductivity ke (W/m-K) and the Seebeck/Peltier coefficients αS (V/K)/αP (V) are defined as,

Various carriers (electrons, magnons, phonons, and polarons) and their interactions substantially affect the Seebeck coefficient. [31] [32] The Seebeck coefficient can be decomposed with two contributions, αS = αS,pres + αS,trans, where αS,pres is the sum of contributions to the carrier-induced entropy change, i.e., αS,pres = αS,mix + αS,spin + αS,vib (αS,mix: entropy-of-mixing, αS,spin: spin entropy, and αS,vib: vibrational entropy). The other contribution αS,trans is the net energy transferred in moving a carrier divided by qT (q: carrier charge). The electron's contributions to the Seebeck coefficient are mostly in αS,pres. The αS,mix is usually dominant in lightly doped semiconductors. The change of the entropy-of-mixing upon adding an electron to a system is the so-called Heikes formula

where feo = N/Na is the ratio of electrons to sites (carrier concentration). Using the chemical potential (μ), the thermal energy (kBT) and the Fermi function, above equation can be expressed in an alternative form, αS,mix = (kB/q)[(Eeμ)/(kBT)]. Extending the Seebeck effect to spins, a ferromagnetic alloy can be a good example. The contribution to the Seebeck coefficient that results from electrons' presence altering the systems spin entropy is given by αS,spin = ΔSspin/q = (kB/q)ln[(2s + 1)/(2s0 +1)], where s0 and s are net spins of the magnetic site in the absence and presence of the carrier, respectively. Many vibrational effects with electrons also contribute to the Seebeck coefficient. The softening of the vibrational frequencies produces a change of the vibrational entropy is one of examples. The vibrational entropy is the negative derivative of the free energy, i.e.,

where Dp(ω) is the phonon density-of-states for the structure. For the high-temperature limit and series expansions of the hyperbolic functions, the above is simplified as αS,vib = (ΔSvib/q) = (kB/qi(-Δωi/ωi).

The Seebeck coefficient derived in the above Onsager formulation is the mixing component αS,mix, which dominates in most semiconductors. The vibrational component in high-band gap materials such as B13C2 is very important.
Considering the microscopic transport (transport is a results of nonequilibrium),

where ue is the electron velocity vector, fe (feo) is the electron nonequilibrium (equilibrium) distribution, τe is the electron scattering time, Ee is the electron energy, and Fte is the electric and thermal forces from ∇(EF/ec) and ∇(1/T). Relating the thermoelectric coefficients to the microscopic transport equations for je and q, the thermal, electric, and thermoelectric properties are calculated. Thus, ke increases with the electrical conductivity σe and temperature T, as the Wiedemann–Franz law presents [ke/(σeTe) = (1/3)(πkB/ec)2 = 2.44×10−8 W-Ω/K2]. Electron transport (represented as σe) is a function of carrier density ne,c and electron mobility μe (σe = ecne,cμe). μe is determined by electron scattering rates (or relaxation time, ) in various interaction mechanisms including interaction with other electrons, phonons, impurities and boundaries.

Electrons interact with other principal energy carriers. Electrons accelerated by an electric field are relaxed through the energy conversion to phonon (in semiconductors, mostly optical phonon), which is called Joule heating. Energy conversion between electric potential and phonon energy is considered in thermoelectrics such as Peltier cooling and thermoelectric generator. Also, study of interaction with photons is central in optoelectronic applications (i.e. light-emitting diode, solar photovoltaic cells, etc.). Interaction rates or energy conversion rates can be evaluated using the Fermi golden rule (from the perturbation theory) with ab initio approach.

Fluid particle

Fluid particle is the smallest unit (atoms or molecules) in the fluid phase (gas, liquid or plasma) without breaking any chemical bond. Energy of fluid particle is divided into potential, electronic, translational, vibrational, and rotational energies. The heat (thermal) energy storage in fluid particle is through the temperature-dependent particle motion (translational, vibrational, and rotational energies). The electronic energy is included only if temperature is high enough to ionize or dissociate the fluid particles or to include other electronic transitions. These quantum energy states of the fluid particles are found using their respective quantum Hamiltonian. These are Hf,t = −(ħ2/2m)∇2, Hf,v = −(ħ2/2m)∇2 + Γx2/2 and Hf,r = −(ħ2/2If)∇2 for translational, vibrational and rotational modes. (Γ: spring constant, If: the moment of inertia for the molecule). From the Hamiltonian, the quantized fluid particle energy state Ef and partition functions Zf [with the Maxwell–Boltzmann (MB) occupancy distribution] are found as [33]

Here, gf is the degeneracy, n, l, and j are the transitional, vibrational and rotational quantum numbers, Tf,v is the characteristic temperature for vibration (= ħωf,v/kB, : vibration frequency), and Tf,r is the rotational temperature [= ħ2/(2IfkB)]. The average specific internal energy is related to the partition function through Zf,

With the energy states and the partition function, the fluid particle specific heat capacity cv,f is the summation of contribution from various kinetic energies (for non-ideal gas the potential energy is also added). Because the total degrees of freedom in molecules is determined by the atomic configuration, cv,f has different formulas depending on the configuration, [33]

where Rg is the gas constant (= NAkB, NA: the Avogadro constant) and M is the molecular mass (kg/kmol). (For the polyatomic ideal gas, No is the number of atoms in a molecule.) In gas, constant-pressure specific heat capacity cp,f has a larger value and the difference depends on the temperature T, volumetric thermal expansion coefficient β and the isothermal compressibility κ [cp,fcv,f = 2/(ρfκ), ρf : the fluid density]. For dense fluids that the interactions between the particles (the van der Waals interaction) should be included, and cv,f and cp,f would change accordingly. The net motion of particles (under gravity or external pressure) gives rise to the convection heat flux qu = ρfcp,fufT. Conduction heat flux qk for ideal gas is derived with the gas kinetic theory or the Boltzmann transport equations, and the thermal conductivity is

where ⟨uf21/2 is the RMS (root mean square) thermal velocity (3kBT/m from the MB distribution function, m: atomic mass) and τf-f is the relaxation time (or intercollision time period) [(21/2π d2nfuf⟩)−1 from the gas kinetic theory, ⟨uf⟩: average thermal speed (8kBT/πm)1/2, d: the collision diameter of fluid particle (atom or molecule), nf: fluid number density].

kf is also calculated using molecular dynamics (MD), which simulates physical movements of the fluid particles with the Newton equations of motion (classical) and force field (from ab initio or empirical properties). For calculation of kf, the equilibrium MD with Green–Kubo relations, which express the transport coefficients in terms of integrals of time correlation functions (considering fluctuation), or nonequilibrium MD (prescribing heat flux or temperature difference in simulated system) are generally employed.

Fluid particles can interact with other principal particles. Vibrational or rotational modes, which have relatively high energy, are excited or decay through the interaction with photons. Gas lasers employ the interaction kinetics between fluid particles and photons, and laser cooling has been also considered in CO2 gas laser. [34] [35] Also, fluid particles can be adsorbed on solid surfaces (physisorption and chemisorption), and the frustrated vibrational modes in adsorbates (fluid particles) is decayed by creating e-h+ pairs or phonons. These interaction rates are also calculated through ab initio calculation on fluid particle and the Fermi golden rule. [36]

Photon

Spectral photon absorption coefficient for typical gas, liquid, and solid phases. For the solid phase, examples of polymer, oxide, semiconductor, and metals are given. Spectral photon absorption coefficient.jpg
Spectral photon absorption coefficient for typical gas, liquid, and solid phases. For the solid phase, examples of polymer, oxide, semiconductor, and metals are given.

Photon is the quanta of electromagnetic (EM) radiation and energy carrier for radiation heat transfer. The EM wave is governed by the classical Maxwell equations, and the quantization of EM wave is used for phenomena such as the blackbody radiation (in particular to explain the ultraviolet catastrophe). The quanta EM wave (photon) energy of angular frequency ωph is Eph = ħωph, and follows the Bose–Einstein distribution function (fph). The photon Hamiltonian for the quantized radiation field (second quantization) is [37] [38]

where ee and be are the electric and magnetic fields of the EM radiation, εo and μo are the free-space permittivity and permeability, V is the interaction volume, ωph,α is the photon angular frequency for the α mode and cα and cα are the photon creation and annihilation operators. The vector potential ae of EM fields (ee = −∂ae/∂t and be = ∇×ae) is

where sph,α is the unit polarization vector, κα is the wave vector.

Blackbody radiation among various types of photon emission employs the photon gas model with thermalized energy distribution without interphoton interaction. From the linear dispersion relation (i.e., dispersionless), phase and group speeds are equal (uph = d ωph/ = ωph/κ, uph: photon speed) and the Debye (used for dispersionless photon) density of states is Dph,b,ω = ωph2ph/π2uph3. With Dph,b,ω and equilibrium distribution fph, photon energy spectral distribution dIb,ω or dIb,λ (λph: wavelength) and total emissive power Eb are derived as

(Planck law),

(Stefan–Boltzmann law).

Compared to blackbody radiation, laser emission has high directionality (small solid angle ΔΩ) and spectral purity (narrow bands Δω). Lasers range far-infrared to X-rays/γ-rays regimes based on the resonant transition (stimulated emission) between electronic energy states. [39]

Near-field radiation from thermally excited dipoles and other electric/magnetic transitions is very effective within a short distance (order of wavelength) from emission sites. [40] [41] [42]

The BTE for photon particle momentum pph = ħωphs/uph along direction s experiencing absorption/emission (= uphσph,ω[fph(ωph,T) - fph(s)], σph,ω: spectral absorption coefficient), and generation/removal , is [43] [44]

In terms of radiation intensity (Iph,ω = uphfphħωphDph,ω/4π, Dph,ω: photon density of states), this is called the equation of radiative transfer (ERT) [44]

The net radiative heat flux vector is

From the Einstein population rate equation, spectral absorption coefficient σph,ω in ERT is, [45]

where is the interaction probability (absorption) rate or the Einstein coefficient B12 (J−1 m3 s−1), which gives the probability per unit time per unit spectral energy density of the radiation field (1: ground state, 2: excited state), and ne is electron density (in ground state). This can be obtained using the transition dipole moment μe with the FGR and relationship between Einstein coefficients. Averaging σph,ω over ω gives the average photon absorption coefficient σph.

For the case of optically thick medium of length L, i.e., σphL >> 1, and using the gas kinetic theory, the photon conductivity kph is 16σSBT3/3σph (σSB: Stefan–Boltzmann constant, σph: average photon absorption), and photon heat capacity nphcv,ph is 16σSBT3/uph.

Photons have the largest range of energy and central in a variety of energy conversions. Photons interact with electric and magnetic entities. For example, electric dipole which in turn are excited by optical phonons or fluid particle vibration, or transition dipole moments of electronic transitions. In heat transfer physics, the interaction kinetics of phonon is treated using the perturbation theory (the Fermi golden rule) and the interaction Hamiltonian. The photon-electron interaction is [46]

where pe is the dipole moment vector and a and a are the creation and annihilation of internal motion of electron. Photons also participate in ternary interactions, e.g., phonon-assisted photon absorption/emission (transition of electron energy level). [47] [48] The vibrational mode in fluid particles can decay or become excited by emitting or absorbing photons. Examples are solid and molecular gas laser cooling. [49] [50] [51]

Using ab initio calculations based on the first principles along with EM theory, various radiative properties such as dielectric function (electrical permittivity, εe,ω), spectral absorption coefficient (σph,ω), and the complex refraction index (mω), are calculated for various interactions between photons and electric/magnetic entities in matter. [52] [53] For example, the imaginary part (εe,c,ω) of complex dielectric function (εe,ω = εe,r,ω + iεe,c,ω) for electronic transition across a bandgap is [3]

where V is the unit-cell volume, VB and CB denote the valence and conduction bands, wκ is the weight associated with a κ-point, and pij is the transition momentum matrix element. The real part is εe,r,ω is obtained from εe,c,ω using the Kramers-Kronig relation [54]

Here, denotes the principal value of the integral.

In another example, for the far IR regions where the optical phonons are involved, the dielectric function (εe,ω) are calculated as

where LO and TO denote the longitudinal and transverse optical phonon modes, j is all the IR-active modes, and γ is the temperature-dependent damping term in the oscillator model. εe,∞ is high frequency dielectric permittivity, which can be calculated DFT calculation when ions are treated as external potential.

From these dielectric function (εe,ω) calculations (e.g., Abinit, VASP, etc.), the complex refractive index mω(= nω + iκω, nω: refraction index and κω: extinction index) is found, i.e., mω2 = εe,ω = εe,r,ω + iεe,c,ω). The surface reflectance R of an ideal surface with normal incident from vacuum or air is given as [55] R = [(nω - 1)2 + κω2]/[(nω + 1)2 + κω2]. The spectral absorption coefficient is then found from σph,ω = 2ωκω/uph. The spectral absorption coefficient for various electric entities are listed in the below table. [56]

MechanismRelation (σph,ω)
Electronic absorption transition (atom, ion or molecule), [ne,A: number density of ground state, ωe,g: transition angular frequency, : spontaneous emission rate (s−1), μe: transition dipole moment, : bandwidth]
Free carrier absorption (metal) (ne,c: number density of conduction electrons, : average momentum electron relaxation time, εo: free space electrical permittivity)
Direct-band absorption (semiconductor) (nω: index of refraction, Dph-e: joint density of states)
Indirect-band absorption (semiconductor)with phonon absorption: (aph-e-p,a phonon absorption coupling coefficient, ΔEe,g: bandgap, ωp: phonon energy )
with phonon emission: (aph-e-p,e phonon emission coupling coefficient)

See also

Related Research Articles

<i>Bremsstrahlung</i> Electromagnetic radiation due to deceleration of charged particles

Bremsstrahlung, from bremsen "to brake" and Strahlung "radiation"; i.e., "braking radiation" or "deceleration radiation", is electromagnetic radiation produced by the deceleration of a charged particle when deflected by another charged particle, typically an electron by an atomic nucleus. The moving particle loses kinetic energy, which is converted into radiation, thus satisfying the law of conservation of energy. The term is also used to refer to the process of producing the radiation. Bremsstrahlung has a continuous spectrum, which becomes more intense and whose peak intensity shifts toward higher frequencies as the change of the energy of the decelerated particles increases.

<span class="mw-page-title-main">Phonon</span> Quasiparticle of mechanical vibrations

In physics, a phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phonon is an excited state in the quantum mechanical quantization of the modes of vibrations for elastic structures of interacting particles. Phonons can be thought of as quantized sound waves, similar to photons as quantized light waves.

<span class="mw-page-title-main">Fermi gas</span> Physical model of gases composed of many non-interacting identical fermions

An ideal Fermi gas is a state of matter which is an ensemble of many non-interacting fermions. Fermions are particles that obey Fermi–Dirac statistics, like electrons, protons, and neutrons, and, in general, particles with half-integer spin. These statistics determine the energy distribution of fermions in a Fermi gas in thermal equilibrium, and is characterized by their number density, temperature, and the set of available energy states. The model is named after the Italian physicist Enrico Fermi.

<span class="mw-page-title-main">Polaron</span> Quasiparticle in condensed matter physics

A polaron is a quasiparticle used in condensed matter physics to understand the interactions between electrons and atoms in a solid material. The polaron concept was proposed by Lev Landau in 1933 and Solomon Pekar in 1946 to describe an electron moving in a dielectric crystal where the atoms displace from their equilibrium positions to effectively screen the charge of an electron, known as a phonon cloud. This lowers the electron mobility and increases the electron's effective mass.

Creation operators and annihilation operators are mathematical operators that have widespread applications in quantum mechanics, notably in the study of quantum harmonic oscillators and many-particle systems. An annihilation operator lowers the number of particles in a given state by one. A creation operator increases the number of particles in a given state by one, and it is the adjoint of the annihilation operator. In many subfields of physics and chemistry, the use of these operators instead of wavefunctions is known as second quantization. They were introduced by Paul Dirac.

<span class="mw-page-title-main">Dispersion relation</span> Relation of wavelength/wavenumber as a function of a waves frequency

In the physical sciences and electrical engineering, dispersion relations describe the effect of dispersion on the properties of waves in a medium. A dispersion relation relates the wavelength or wavenumber of a wave to its frequency. Given the dispersion relation, one can calculate the phase velocity and group velocity of waves in the medium, as a function of frequency. In addition to the geometry-dependent and material-dependent dispersion relations, the overarching Kramers–Kronig relations describe the frequency dependence of wave propagation and attenuation.

In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.

<span class="mw-page-title-main">Two-state quantum system</span> Simple quantum mechanical system

In quantum mechanics, a two-state system is a quantum system that can exist in any quantum superposition of two independent quantum states. The Hilbert space describing such a system is two-dimensional. Therefore, a complete basis spanning the space will consist of two independent states. Any two-state system can also be seen as a qubit.

<span class="mw-page-title-main">Jaynes–Cummings model</span> Model in quantum optics

The Jaynes–Cummings model is a theoretical model in quantum optics. It describes the system of a two-level atom interacting with a quantized mode of an optical cavity, with or without the presence of light. It was originally developed to study the interaction of atoms with the quantized electromagnetic field in order to investigate the phenomena of spontaneous emission and absorption of photons in a cavity.

Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic wave. An individual photon can be described as having right or left circular polarization, or a superposition of the two. Equivalently, a photon can be described as having horizontal or vertical linear polarization, or a superposition of the two.

The theoretical and experimental justification for the Schrödinger equation motivates the discovery of the Schrödinger equation, the equation that describes the dynamics of nonrelativistic particles. The motivation uses photons, which are relativistic particles with dynamics described by Maxwell's equations, as an analogue for all types of particles.

<span class="mw-page-title-main">Angle-resolved photoemission spectroscopy</span> Experimental technique to determine the distribution of electrons in solids

Angle-resolved photoemission spectroscopy (ARPES) is an experimental technique used in condensed matter physics to probe the allowed energies and momenta of the electrons in a material, usually a crystalline solid. It is based on the photoelectric effect, in which an incoming photon of sufficient energy ejects an electron from the surface of a material. By directly measuring the kinetic energy and emission angle distributions of the emitted photoelectrons, the technique can map the electronic band structure and Fermi surfaces. ARPES is best suited for the study of one- or two-dimensional materials. It has been used by physicists to investigate high-temperature superconductors, graphene, topological materials, quantum well states, and materials exhibiting charge density waves.

Surface-extended X-ray absorption fine structure (SEXAFS) is the surface-sensitive equivalent of the EXAFS technique. This technique involves the illumination of the sample by high-intensity X-ray beams from a synchrotron and monitoring their photoabsorption by detecting in the intensity of Auger electrons as a function of the incident photon energy. Surface sensitivity is achieved by the interpretation of data depending on the intensity of the Auger electrons instead of looking at the relative absorption of the X-rays as in the parent method, EXAFS.

An electric dipole transition is the dominant effect of an interaction of an electron in an atom with the electromagnetic field.

The Monte Carlo method for electron transport is a semiclassical Monte Carlo (MC) approach of modeling semiconductor transport. Assuming the carrier motion consists of free flights interrupted by scattering mechanisms, a computer is utilized to simulate the trajectories of particles as they move across the device under the influence of an electric field using classical mechanics. The scattering events and the duration of particle flight is determined through the use of random numbers.

The quasi-harmonic approximation is a phonon-based model of solid-state physics used to describe volume-dependent thermal effects, such as the thermal expansion. It is based on the assumption that the harmonic approximation holds for every value of the lattice constant, which is to be viewed as an adjustable parameter.

The semiconductor luminescence equations (SLEs) describe luminescence of semiconductors resulting from spontaneous recombination of electronic excitations, producing a flux of spontaneously emitted light. This description established the first step toward semiconductor quantum optics because the SLEs simultaneously includes the quantized light–matter interaction and the Coulomb-interaction coupling among electronic excitations within a semiconductor. The SLEs are one of the most accurate methods to describe light emission in semiconductors and they are suited for a systematic modeling of semiconductor emission ranging from excitonic luminescence to lasers.

Electric dipole spin resonance (EDSR) is a method to control the magnetic moments inside a material using quantum mechanical effects like the spin–orbit interaction. Mainly, EDSR allows to flip the orientation of the magnetic moments through the use of electromagnetic radiation at resonant frequencies. EDSR was first proposed by Emmanuel Rashba.

<span class="mw-page-title-main">Phonovoltaic</span>

A phonovoltaic (pV) cell converts vibrational (phonons) energy into a direct current much like the photovoltaic effect in a photovoltaic (PV) cell converts light (photon) into power. That is, it uses a p-n junction to separate the electrons and holes generated as valence electrons absorb optical phonons more energetic than the band gap, and then collects them in the metallic contacts for use in a circuit. The pV cell is an application of heat transfer physics and competes with other thermal energy harvesting devices like the thermoelectric generator.

<span class="mw-page-title-main">Lorentz oscillator model</span> Theoretical model describing the optical response of bound charges

The Lorentz oscillator model describes the optical response of bound charges. The model is named after the Dutch physicist Hendrik Antoon Lorentz. It is a classical, phenomenological model for materials with characteristic resonance frequencies for optical absorption, e.g. ionic and molecular vibrations, interband transitions (semiconductors), phonons, and collective excitations.

References

  1. 1 2 Tien, Chang-Lin; Majumdar, Arunava; Gerner, Frank M., eds. (1998). Microscale energy transport. Washington, D.C.: Taylor & Francis. ISBN   978-1560324591.
  2. 1 2 Chen, G. (2004). Nanoscale energy transport and conversion: a parallel treatment of electrones, molecules, phonons, and photons. New York: Oxford. ISBN   978-0195159424.
  3. 1 2 Zhang, Z. M. (2007). Nano/microscale heat transfer ([Online-Ausg.]. ed.). New York: McGraw-Hill. ISBN   978-0071436748.
  4. Volz, S. (2010). Microscale and Nanoscale Heat Transfer (Topics in Applied Physics). Springer. ISBN   978-3642071584.
  5. 1 2 3 4 Kaviany, M. (2014). Heat transfer physics (2nd ed.). Cambridge: Cambridge University Press. ISBN   978-1-107041783.
  6. Kaviany, M. (2011). Essentials of heat transfer: principles, materials, and applications. Cambridge: Cambridge University Press. ISBN   9781107012400.
  7. Carey, V. P.; Chen, G.; Grigoropoulos, C.; Kaviany, M.; Majumdar, A. (2008). "A Review of Heat Transfer Physics". Nanoscale and Microscale Thermophysical Engineering. 12 (1): 1–60. Bibcode:2008NMTE...12....1C. CiteSeerX   10.1.1.475.5253 . doi:10.1080/15567260801917520. S2CID   51900755.
  8. Oligschleger, C.; Schön, J. (1999). "Simulation of thermal conductivity and heat transport in solids". Physical Review B. 59 (6): 4125–4133. arXiv: cond-mat/9811156 . Bibcode:1999PhRvB..59.4125O. doi:10.1103/PhysRevB.59.4125. S2CID   118983264.
  9. Pisani, C. (1996). Quantum-mechanical ab-initio calculation of the properties of crystalline materials. Berlin: Springer-Verlag. ISBN   978-3540616450.
  10. Sholl, D. S.; Steckel, J. A. (2009). Density functional theory : a practical introduction ([Online-Ausg.]. ed.). Hoboken, N.J.: Wiley. ISBN   978-0470373170.
  11. Marx, D.; Hutter, J (2009). Ab initio molecular dynamics : basic theory and advanced methods (1. publ., repr. ed.). Cambridge, UK: Cambridge University Press. ISBN   978-0521898638.
  12. Haile, J.M. (1997). Molecular dynamics simulation : elementary methods (Reprinted. ed.). New York: Wiley. ISBN   978-0471184393.
  13. Frenkel, D; Smit, B (2002). Understanding molecular simulation from algorithms to applications (2nd ed.). San Diego: Academic Press. ISBN   978-0122673511.
  14. Lundstrom, M. (2009). Fundamentals of Carrier Transport (2. ed., digitally pr. version. ed.). Cambridge [u.a.]: Cambridge Univ Press. ISBN   978-0521637244.
  15. 1 2 Ashcroft, Neil W.; Mermin, N. David (1977). Solid state physics (27. repr. ed.). New York: Holt, Rinehart and Winston. ISBN   978-0030839931.
  16. Ziman, J.M. (1985). Principles of the theory of solids (2nd ed.). Cambridge: Cambridge University Press. ISBN   978-0521297332.
  17. 1 2 Dove, M. T. (2005). Introduction to lattice dynamics (Digitally printed 1st pbk. version. ed.). Cambridge: Cambridge University Press. ISBN   978-0521398947.
  18. Greegor, R.; Lytle, F. (1979). "Extended x-ray absorption fine structure determination of thermal disorder in Cu: Comparison of theory and experiment". Physical Review B. 20 (12): 4902–4907. Bibcode:1979PhRvB..20.4902G. doi:10.1103/PhysRevB.20.4902.
  19. 1 2 3 Kittel, C. (2005). Introduction to Solid State Physics (8th ed.). Hoboken, New Jersey: John Wiley & Sons. ISBN   978-0471415268.
  20. Millat, J.; Nieto de Castro, C. A., eds. (1996). Transport properties of fluids: their correlation, prediction and estimation. Cambridge: Univ. Press. ISBN   978-0521461788.
  21. 1 2 3 Holland, M. (1963). "Analysis of Lattice Thermal Conductivity". Physical Review. 132 (6): 2461–2471. Bibcode:1963PhRv..132.2461H. doi:10.1103/PhysRev.132.2461.
  22. Nilsson, G.; Nelin, G. (1971). "Phonon Dispersion Relations in Ge at 80 K". Physical Review B. 3 (2): 364–369. Bibcode:1971PhRvB...3..364N. doi:10.1103/PhysRevB.3.364.
  23. Tiwari, M.; Agrawal, B. (1971). "Analysis of the Lattice Thermal Conductivity of Germanium". Physical Review B. 4 (10): 3527–3532. Bibcode:1971PhRvB...4.3527T. doi:10.1103/PhysRevB.4.3527.
  24. McGaughey, A.; Kaviany, M. (2004). "Quantitative validation of the Boltzmann transport equation phonon thermal conductivity model under the single-mode relaxation time approximation". Physical Review B. 69 (9): 094303. Bibcode:2004PhRvB..69i4303M. doi:10.1103/PhysRevB.69.094303.
  25. Ziman, J.M. (1972). Electrons and phonons : the theory of transport phenomena in solids ([2e éd. corrigée] ed.). London: Oxford University Press. ISBN   978-0198512356.
  26. Callaway, J. (1959). "Model for Lattice Thermal Conductivity at Low Temperatures". Physical Review. 113 (4): 1046–1051. Bibcode:1959PhRv..113.1046C. doi:10.1103/PhysRev.113.1046.
  27. Berman, R. (1979). Thermal conduction in solids. Oxford: Clarendon Press. ISBN   978-0198514305.
  28. Seitz, F.; Ehrenreich, H.; Turnbull, D., eds. (1979). Solid state physics: advances in research and applications. New York: Academic Press. pp. 1–73. ISBN   978-0-12-607734-6.
  29. Swartz, E.; Pohl, R. (1989). "Thermal boundary resistance". Reviews of Modern Physics. 61 (3): 605–668. Bibcode:1989RvMP...61..605S. doi:10.1103/RevModPhys.61.605.
  30. Onsager, L. (1931). "Reciprocal Relations in Irreversible Processes. I". Physical Review. 37 (4): 405–426. Bibcode:1931PhRv...37..405O. doi: 10.1103/PhysRev.37.405 .
  31. Emin, D. (1987). "Icosahedral Boron-Rich Solids". Physics Today. 40 (1): 55–62. Bibcode:1987PhT....40a..55E. doi:10.1063/1.881112.
  32. Kanatzidis, M.G.; Mahanti, S. D.; Hogan, T. P., eds. (2003). Chemistry, physics, and materials science of thermoelectric materials : beyond bismuth telluride. New York [u.a.]: Kluwer Academic/Plenum Publ. ISBN   978-0306477386.
  33. 1 2 Carey, V. P. (1999). Statistical thermodynamics and microscale thermophysics. Cambridge: Cambridge University Press. ISBN   978-0521654203.
  34. Djeu, N.; Whitney, W. (1981). "Laser Cooling by Spontaneous Anti-Stokes Scattering". Physical Review Letters. 46 (4): 236–239. Bibcode:1981PhRvL..46..236D. doi:10.1103/PhysRevLett.46.236.
  35. Shin, S.; Kaviany, M. (2009). "Enhanced laser cooling of CO2–Xe gas using (0200) excitation". Journal of Applied Physics. 106 (12): 124910–124910–6. Bibcode:2009JAP...106l4910S. doi:10.1063/1.3273488.
  36. Sakong, S.; Kratzer, P.; Han, X.; Laß, K.; Weingart, O.; Hasselbrink, E. (2008). "Density-functional theory study of vibrational relaxation of CO stretching excitation on Si(100)". The Journal of Chemical Physics. 129 (17): 174702. Bibcode:2008JChPh.129q4702S. doi:10.1063/1.2993254. PMID   19045365.
  37. Sakurai, J.J. (1973). Advanced quantum mechanics (4th printing, with revisions. ed.). Menlo Park, California: Benjamin/Cummings. ISBN   978-0201067101.
  38. Merzbacher, E. (1998). Quantum mechanics (3rd ed.). New York [u.a.]: Wiley. ISBN   978-0471887027.
  39. Siegman, A. E. (1986). Lasers (8. print. ed.). Mill Valley, California: University Science Books. ISBN   978-0935702118.
  40. Ottens, R.; Quetschke, V.; Wise, Stacy; Alemi, A.; Lundock, R.; Mueller, G.; Reitze, D.; Tanner, D.; Whiting, B. (2011). "Near-Field Radiative Heat Transfer between Macroscopic Planar Surfaces". Physical Review Letters. 107 (1): 014301. arXiv: 1103.2389 . Bibcode:2011PhRvL.107a4301O. doi:10.1103/PhysRevLett.107.014301. PMID   21797544. S2CID   27038790.
  41. Tatarskii, V.I.; Rytov, S.M.; Kravtsov, Y. A. (1987). Principles of statistical radiophysics (2. rev. and enl. ed.). Berlin u.a.: Springer. ISBN   978-3540125624.
  42. Domingues, G.; Volz, S.; Joulain, K.; Greffet, J.-J. (2005). "Heat Transfer between Two Nanoparticles Through Near Field Interaction". Physical Review Letters. 94 (8): 085901. Bibcode:2005PhRvL..94h5901D. doi:10.1103/PhysRevLett.94.085901. PMID   15783904.
  43. Sampson, D. H. (1965). Radiative Contributions to Energy and Momentum Transport in a Gas. Interscience.
  44. 1 2 Howell, J. R.; Siegel, R.;Mengüç, M. P. (2010). Thermal radiation heat transfer (5th ed.). Boca Raton, Florida: CRC. ISBN   978-1439805336.
  45. Loudon, R. (2000). The quantum theory of light (3. ed.). Oxford [u.a.]: Oxford Univ. Press. ISBN   978-0198501763.
  46. Di Bartolo, B. (2010). Optical interactions in solids (2nd ed.). New Jersey: World Scientific. ISBN   978-9814295741.
  47. Garcia, H.; Kalyanaraman, R. (2006). "Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz–Keldysh effect in indirect gap semiconductors". Journal of Physics B: Atomic, Molecular and Optical Physics. 39 (12): 2737–2746. Bibcode:2006JPhB...39.2737G. doi:10.1088/0953-4075/39/12/009.
  48. Kim, J.; Kapoor, A.; Kaviany, M. (2008). "Material metrics for laser cooling of solids". Physical Review B. 77 (11): 115127. Bibcode:2008PhRvB..77k5127K. doi:10.1103/PhysRevB.77.115127.
  49. Phillips, W. D. (1998). "Nobel Lecture: Laser cooling and trapping of neutral atoms". Reviews of Modern Physics. 70 (3): 721–741. Bibcode:1998RvMP...70..721P. doi: 10.1103/RevModPhys.70.721 .
  50. Chan, J.; Alegre, T. P. Mayer; Safavi-Naeini, Amir H.; Hill, Jeff T.; Krause, Alex; Gröblacher, Simon; Aspelmeyer, Markus; Painter, Oskar (2011). "Laser cooling of a nanomechanical oscillator into its quantum ground state". Nature. 478 (7367): 89–92. arXiv: 1106.3614 . Bibcode:2011Natur.478...89C. doi:10.1038/nature10461. PMID   21979049. S2CID   4382148.
  51. Hehlen, M.; Epstein, R.; Inoue, H. (2007). "Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN". Physical Review B. 75 (14): 144302. Bibcode:2007PhRvB..75n4302H. doi:10.1103/PhysRevB.75.144302.
  52. Bao, H.; Ruan, X. (2009). "Ab initio calculations of thermal radiative properties: The semiconductor GaAs". International Journal of Heat and Mass Transfer. 53 (7–8): 1308–1312. doi:10.1016/j.ijheatmasstransfer.2009.12.033.
  53. Bao, H.; Qiu, B.; Zhang, Y.; Ruan, X. (2012). "A first-principles molecular dynamics approach for predicting optical phonon lifetimes and far-infrared reflectance of polar materials". Journal of Quantitative Spectroscopy and Radiative Transfer. 113 (13): 1683–1688. Bibcode:2012JQSRT.113.1683B. doi:10.1016/j.jqsrt.2012.04.018.
  54. Wooten, F. (1972). Optical Properties of Solids (3. [Dr.] ed.). San Diego [etc.]: Academic Press. ISBN   978-0127634500.
  55. Pedrotti, F. L.; Pedrotti, L. S.; Pedrotti, L. M. (2007). Introduction to optics (3rd ed. -- ed.). Upper Saddle River, N.J.: Pearson Prentice Hall. ISBN   978-0131499331.
  56. Born, M.; Emil Wolf; A.B. Bhatia (2006). Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light (repr. with corr., 4th print. 7th expanded ed.). Cambridge [u.a.]: Cambridge University Press. ISBN   978-0521642224.